Open Source ENKI: Dynamic Environmental Model Framework

A possible pre-processor for WRF-Hydro?

1st European Fully Coupled Atmospheric-Hydrological Modeling and WRF-Hydro Users workshop. University of Calabria. 11-13 June, 2014

John F. Burkhart Sjur Kolberg Sigbjørn Helset & Code Contributors

1

Overview

Energy Management in practice
Overview of the ENKI Hydrologic Modeling Framework
ENKI as a prototyping framework for WRF-Hydro

What is ENKI?

Software framework for model building and evaluation Extension and re-writing of PINE (Rinde, 1994-97), financed by Statkraft Simulation of temporal processes in spatial variables Primary application: Distributed hydrologic models Now: Open Source project under operationalisation Sumerian deity for sweet water, wisdom and magic

The Hydrologic Modeling Framework: ENKI

- Main objects are the model and the **region**
- A **region** is a set of static and dynamic GIS data
- A **model** is an ordered set of subroutines
- The subroutine variables are linked to the region's GIS data.
- It's Open Source and easily available (bitbucket)
- Linux and Python Porting are underway!

Recent activity

Sigbjørn Helset updated wiki-page Building Enki for Arch Linux and Ubuntu(linux

 UiO : Department of Geosciences

University of Oslo

Distributed models and regional simulation

- One regional ENKI setup replaces many HBV models
- Common setup of input data using GIS tools
- Easy input of:
 - Weather radar
 - Satellite data
 - Gridded met forecasts.
- The catchment is no longer the primary unit for
 - Simulation
 - Calibration

UiO **Contemportation** Department of Geosciences University of Oslo

Distributed models

- Strong input gradients in mountainous basins
- Nonlinear processes
- Models need to be
 - More physical
 - Less calibrated
 - ...but simpler
- Fewer states*
- Fewer parameters*
- Regional calibration
- Spatial parameter maps only where data allow

UiO Department of Geosciences

University of Oslo

Regional simulation and calibration

Why regional calibration?

- In a distributed model, the parameters are applied to a different spatial unit than they can be inferred from.
- Operative management: Simulate arbitrary areas / catchments
 - Compared to area scaling of discharge, differences in meteorology, elevation and land use are honoured
 - In a regional model, the performance in gauged catchments is an estimator of the performance in the ungauged catchments
- Calibration: Robust parameter estimates
 - By fitting several series simultaneously, the effect of errors and peculiarities in single catchments or series is reduced.

Development: Discovery of errors and biases in model or data

- Adaptation to poor observation series is avoided
- Bad assumptions or data are exposed as errors
- But: Regional calibration always gives weaker performance in single catchments than specific calibration

UiO **Content of Geosciences**

University of Oslo

Regional and local R2

Average best R2	Regional	Local
Gridded HBV	0.679	0.741
	0.684	0.752

GIS based model setup:

- Elevation map (DTM)
- Subcatchment delination
- Meteorological station map
- Lake percentage map
- Forest cover map
- Glacier cover map

Procedure for model evaluation

- Selection: **Operational needs** Dominant processes Available data Validation Required performance Achievable performance Physical correctness? «All models are wrong. Some, however, are useful» (Box, 1979)
 - «A model should not only work well, but work for the right reasons» (Klemes, 1986)

ENKI's three modes of operation

- Model use or evaluation: Interactive simulation, parameter estimation, import/export of GIS or TS data, construction of evaluation criteria etc.
 - No need to know the routines or internal variables in the model
- Model building: Link process methods to a complete model, manipulate spatial distribution
 - No need to code or compile
- **Routine development:** Implement new process routines
 - No need to handle user interface, data I/O, administration of model runs, calibration routines etc.

UiO **Content of Geosciences**

ENKIsimpleTest_SR.top - RegModel						
<u>File View Model Region Parameters Initials Input Outputs</u>	<u>H</u> elp	1	Region: SentralReg			
Run model			Scalar A0 No file Current value: -2.937000			
Model is initialized	Set parameters		A0	New scalar		
Start date 01.08.1999	Set initials		A2 AccMeltDepth	New raster		
End date 31.08.2005	Set PM stats		acctemp actevaph ≣	New network		
Current time 01.08.1999	Monte Carlo		Albedo AverageRunoff BETA	Delete		
Inactive	Pause		Catchments CONIFER_FRAC consthum			
Run / Report Start MC Sim Forecasts	Stop	Model	Constwind	Input Database		
		dialog	dveghgt ehat	Output Database		
The ENKI framework						
	-		etmp	Metadata		
Main objects are the model and the region	1		Experiment_6 FastDecayRate	Statistics		
• A region is a set of static and dynamic GIS	data		fieldcap GlacierAlb			

- A region is a set of static and dynamic GIS data
- A model is an ordered set of subroutines
- The subroutine variables are linked to the region's GIS data.

Region dialog

Ŧ

GLACIERS

GRIB_geopot GRIB_longrad GRIB_prec GRIB_precdur

GRIB_shortrad

GRIB_rhum

Set Files

Read data

Write data

Time series import

- Time series database uses NetCDF
- Discrete time series from ASCII files
- Raster time series from map groups
- GRIB and radar file import/reproj.

Import Raster Group File					x
RGF file		Select variable	OBSS	CA	•
C Regular raster time series		n of maps, each w vent-based data a			
 Discrete-events series 	satellite im		valiability	y like a collect	
C Ensemble group					
First date/time (OBSSCA2001-0)5-06.rst)	Last date/time	(OBSSC	A2001-05-31.	rst)
			1	01	_
		Cancel		OK	

ime series database	
New database Import ASCII table Import raster group Import GRIB data Import radar data	Attributes → Variables → Ntw OBSdischarge(2710,1,1,1) → Ntw rstats(2710,1,1,1,1) → Ntw tstats(2710,1,1,1,23) → Rst GridPrec(2710,1,1,1,200,1) → Rst OBSSCA(57,1,1,1,200,1) → Rst NDSI_OBS(83,1,1,1,200)
Export ASCII table Export raster group	
Close	•

UiO **Contemportation** Department of Geosciences University of Oslo

Assessing performance

Any simulated variable is available for evaluation
Evaluation may be temporal or spatial

A large number of objective functions are available:

Additive: Information strength independent of nobs.

Multiplicative (likelihood): Strength increases with nobs.

Temporal evaluation

Spatial evaluation

UiO **Content of Geosciences**

University of Oslo

Performance Measure specification

Performance measures s	pecification	-	-	And the second		x
Comparison Temporal R2 Temporal RelAvgDev Temporal Likelihood Spatial StdErr Simulated values only	Test data SimDischarge SimplSimDis SCA Upstor	Reference d OBSdischarge OBSdischarge OBSdischarge OBSSCA none	Start Time 01.09.1999 01.09.1999 01.09.1999 01.08.1999 01.08.1999	End Time 31.08.2000 31.08.2000 31.08.2000 31.08.2000 31.08.2000	weights Equal Equal Equal Count None	
New	Del C	verall weighing Equal weights	options	Evaluated v SimDischa d and a reference Start time 01.09.1999	rge 💽	Reference variable OBS discharge etween specified dates Stop time 31.08.2000 NCE

Parameter estimation

istribution	_	Value Va	ariance Min	Max		
Uniform 🔄	•	-3 3	-3	3	Set	
X (Current value	: -1.05)					MC method
Parameter	Routine	Minimum	Maximum	Distribution		_
fieldcap	HydraSoil	0	3.40282E+0	222.5		C Marquardt-Levenberg
infcap	HydraSoil	0	3.40282E+0	100		Multi-surface gradient
etmp	HydraEP	-3.40282E+	3.40282E+0	0.16		search using the Jacobian
consthum	Consthum	-3.40282E+	3.40282E+0	80		matrix (PEST algorithm)
BETA	HydraSoil	-3.40282E+	3.40282E+0	Uniform(0.5,3)		O SCE-UA
ResetSnowD	GamSnow	0	3.40282E+0	30		Global shuffled complex
tvsum	HydraEP	0	3.40282E+0	Uniform(100,1000)	E	evolution. Slow and robust
Constwind	Constwind	-3.40282E+	3.40282E+0	1		for difficult cases.
TX	PcorrMap2;	-3.40282E+	3.40282E+0	Uniform(-3,3)		for difficult cases.
Rtreshold	HBVRespon	-3.40282E+	3.40282E+0	48		C Random MC (GLUE)
LP	HydraSoil	-3.40282E+	3.40282E+0	0.9		Random drawing from
RadGrad	Idwrad	-3.40282E+	3.40282E+0	0		specified distributions
FastDecayRate	GamSnow	0	3.40282E+0	Uniform(1,12)		
Windconst	GamSnow	-3.40282E+	3.40282E+0	Uniform(0.5,9)		DREAM MCMC
MaxIntDist	Idwrad	0	3.40282E+0	300000		Adaptive Metropolis
Tsill	BayesTkrig	0	3.40282E+0	6		sampler, best used with
esnw	HydraEP	-3.40282E+	3.40282E+0	0.1		likelihood-based PMs
epcorr	HydraEP	-3.40282E+	3.40282E+0	1.2		C C
Maxalbedo	GamSnow	0	1	0.9		Conditional Univariate
MaxLWC	GamSnow	0	1	0.1		Univariate sampling around
PriEtgrad	BayesTkrig	-3.40282E+	3.40282E+0	-0.6		an existing optimum, n trials
Trange	BayesTkrig	0	3.40282E+0	50000		per parameter dimension
Tzscale	BayesTkrig	0	3.40282E+0	20		○ External list
ewnd	HydraEP	-3.40282E+	3.40282E+0	0.6		
perc	HBVRespon		3.40282E+0	0.32		Parameter sets read from file
k0	HBVRespon	-3.40282E+	3.40282E+0	0.007	T	lie
	🔲 Set See	d #MCn	uns: 🗌	Store output		
Set file	0	0	9	et PM weights	Cano	cel OK

A typical model setup

Interpolation

Interpolation

Interpolation

- The model framework does not know the function of each routine
- Each time step, the framework calls the routines in specified order
- Each routine maintains the spatial repetition loop
- The routines operate on spatial variables owned by the region
- The region copies data from/to two time series databases before and after each time step

Snow routine

Soil water / evaporation

Response

Catchment aggregation

Channel routing

Results / Evaluation

UiO **Content of Geosciences**

University of Oslo

Model building 1: Routine composition and order

Add Subroutine								
Available methods: BayesTkrig ConstValue GamSnow HBVResponse HydraCanopy HydraEP HydraSoil IDWprec PcorrMap2 Qsubcat SimpleResponse SnowReflect	Subroutines Consthum Constwind Idwrad BayesTkrig PcorrMap2 HydraEP HydraCanopy GamSnow SnowReflect HydraSoil HBVResponse Qsubcat SimpleResponse	Simulation order Move Up Move Down						
Browse Add	Rename Delete	Cancel						

- Loaded DLL methods in left window, with browse capability
- Selected routines in right window, where simulation order is set
- Generic methods may be used for more than one routine

UiO : Department of Geosciences

University of Oslo

Model building 2: Routine variable interface

HydraEP			HydraC	HydraCanopy		GamSnow	
DWtemp	HBVRespon	se Qs	subcat ID'	Wrad	ConstWind	ConstHum	HydraSoil
LocalName	Usage	DataType	Connection	n Descr	iption		~
landuse	static	raster	Landuse	Delimi	ts active area (>	0) (waters=1, lands	surf.>1)
vegcov	static	raster		Cover	age of high veg	etation	
laicap	parameter		laicap	Storag	ge cap. [mm] per	LAI [m2]	
beta	parameter		beta	Non-li	nearity of soil-wa	ter retention rate	
lp	parameter		lp	Relati	ve threshold for	full transpiration	
infcap	parameter		infcap	Infiltra	tion capacity in I	mm/day	_
fieldcap	parameter		fieldcap	Field o	capacity in forest	ted areas	=
LowLAI	input		LowLAI	Leaf A	Area Index in nor	n-forested areas	
HighLAI	input		HighLAI	Leaf A	Area Index in fore	ested areas	
SnowOut	input		SnowOut	Water	r input from snow	v routine	
ocalepot	input		localepot	Local	potential evapor	ration	
snwcov	input		snwcov	Snow	coverage		
actevaph	input		actevaph	Actua	l evaporation fro	m high vegetation	_
solsatV	state		solsatV	Relati	ve soil saturatior	n in deep root zone	(under fc
solsatU	state		solsatU	Relati	ve soil saturatior	n in shallow root zo	ne (no for
Int	state		lint		egetation interco		~
<			A _ 17	A _1	۱ ـ د د		>
Coverage of	high vegetatior						
vegcov		O So	alar 💿 Rasti	er C Ne	etwork	New	<u> </u>

UiO **Contemportation** Department of Geosciences University of Oslo

Adding new variables

- Raster, point network, or scalar
- All are defined as GIS data
- Scalars have no external file
- The region "owns" the GIS variables

Add new scalar 🛛 🛛 🔀							
-Internal scalar i Scalar name Flag value	LAIcap -99	OK Cancel					
Data type Byte C Integer C Real ©	Point location Unlocated X coord 0 Y coord 0	V					

Add new raste	ar -	
File File name	No file 🔽 Browse	Internal raster identification Raster name Vegcov Flag value -99
Data type Byte C Integer C Real III	Raster geometry Region's default From raster File File	C Specify C From Region raster: Cancel

UiO **Contemportation** Department of Geosciences University of Oslo

Main code modules in ENKI

RegModel.exe

Graphical user interface Based on MFC No visualisation, R&D oriented

Statkraft Connections

WEB based service Links to EnkiAPI + SmG database Daily operation oriented

EnkiAPI

Model construction GIS and time series database Different run functions

DHM

GIS data types Method prototypes GDAL integration

Methods

IDWtemp

UiO Department of Geosciences

University of Oelo deployment Deployment View

 Blue boxes is existing or improved versions of the Enki/DemLab software from Sintef.

Variable types i ENKI routines

- Raster: Rectangular grid, usually representing the simulation domain
 Network: Irregular point set, may extend outside the domain
 Scalar: Spatially constant quantity, located or not.
- **Static:** Time-invariant quantity not subject to calibration
 - Elevation model, lake map, forest map, gauge staion map etc.
- **Parameter:** Time-invariant quantity, available for calibration
 - Can be spatially distributed (raster, network), <u>or</u> calibrated (scalar)
- Input: Dynamic variable which is read, but not written
 - Must either be in input database, or also be a response/state in earlier routine
- **Response:** Dynamic variable which is written, but not read.
 - Output variabel, available for storage and evaluation
- **State:** Dynamic variable which is both read and written.
 - Need initialisation values

Available Model Methods in ENKI

- Numerous hydrologic routines have been implemented and are available for model development
- Method classes are available as part of the open source distribution
- Active development of method classes
- Documentation is poor! We are working to improve this.

Interpolation of input

Snow routines

Soil water / evaporation

Response functions

Catchment aggregation

Results / Evaluation

Automatic Calibration

Overview

Energy Management in Statkraft
Overview of the ENKI Hydrologic Modeling Framework
ENKI as a prototyping framework for WRF-Hydro

ENKI's three modes of operation

- Model use or evaluation: Interactive simulation, parameter estimation, import/export of GIS or TS data, construction of evaluation kriteria etc.
 - No need to know the routines or internal variables in the model
- Model building: Link process methods to a complete model, manipulate spatial distribution
 - No need to code or compile

Routine development: Implement new process routines

No need to handle user interface, data I/O, administration of model runs, calibration routines etc.

Coding of new routines

ENKI API :: PreRun

Calls Init() for each Method

ENKI API :: RunModelBackground

MODEL :: SingleRun

PreProc()

Time Step Loop

GetInputs()

RunStep()

WriteResults()

Calls Response() of base Method Class which in turn calls Calc()

At minimum Init() and Calc() methods must be overloaded. If f(t) is required Response() should be overloaded and SetAdvancedMode() called.

Coding of new routines

ENKI API :: PreRun

Calls Init() for each Method

ENKI API :: RunModelBackground

MODEL :: SingleRun

PreProc()

Time Step Loop

GetInputs()

RunStep() 🚽

WriteResults()

Calls Response() of base Method Class which in turn calls Calc()

At minimum Init() and Calc() methods must be overloaded. If f(t) is required Response() should be overloaded and SetAdvancedMode() called.

Coding of new routines

```
#include "lineartank.h"
                             // LinearTank.cpp implementation
LinearTank::LinearTank()
                             // Constructor
{
    storconst = newmethvar("storconst",true,"methvar","parameter","Time constant, days",0);
    inflow = newmethvar("inflow",true,"methvar","input","Inflow to linear tank");
    storage = newmethvar("storage",true,"methvar","state","Response tank storage in mm",0);
    outflow = newmethvar("outflow",true,"methvar","response","Outflow from linear tank");
}
bool LinearTank::Calc()
                             // Response function
{
    storage->value += inflow->value;
    outflow->value = storage->value * (1 - exp(-steplength.m_span / storconst->value));
    storage->value -= outflow->value;
    return true;
}
CMethod* CreateMethodObject()
                                   // Object factory
{
    CMethod *p = new LinearTank;
    return p;
}
```

Model composition

Bayesian temperature kriging

GRF precipitation simulation

Kriging of radiation, humidity, wind

Energy-sum snow melt

Priestley-Taylor potential evap

Power-law response (Kirchner, 2009)

UiO **Contemportation** Department of Geosciences University of Oslo

Main code modules in ENKI

RegModel.exe

Graphical user interface Based on MFC Minimal visualization, R&D oriented

Statkraft Connections

WEB based service Links to EnkiAPI + SmG database Daily operation oriented

EnkiAPI

Model construction GIS and time series database Different run functions

DHM

GIS data types Method prototypes GDAL integration

Summary

- ENKI an excellent tool for testing different model compositions and spatial setup alternatives
- Distributed modelling requires re-thinking of many subroutines, in particular regarding input data
- Regional calibration and restriction of calibration freedom show modest reduction of performance
- Improved parameter identifiability enables regionalisation
- ENKI recently released as OS under the LGPL license
- Currently in operationalisation phase both at Statkraft and among other companies

The Hydrologic Modeling Framework: ENKI

Search: "ENKI Hydrology" Bitbucket is source for linux branch

The following important sections will be provided as we develop the first public release of the software.

- ChangeLog
- NEWS
- INSTALL Installation instructions
- BUGS

COPYING / LICENSE

ENKI is released under GPL V.3 See the COPYING.txt file

Recent activity

Sigbjørn Helset updated wiki-page Building Enki for Arch Linux and Ubuntu(linux

UiO **Content of Geosciences**

Thank you all.

University of Oslo

John F. Burkhart Sjur Kolberg Sigbjørn Helset & Code Contributors