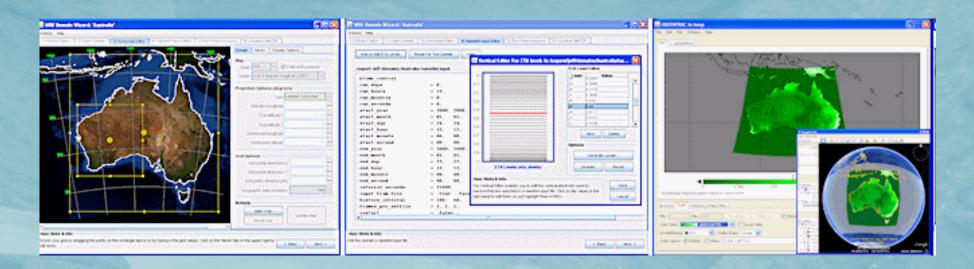
# Data I/O Requirements :

# **WRF-Hydro Input Data:**

### I/O Philosophy :

- 1. Single, consistent data format for I/O (helps minimize coding conventions)
- 2. Convenient and ubiquitous (compatible with many graphical analysis and visualization tools)
- 3. Multiscale, multi-data type
- 4. Meta-data capable
- 5. Efficient in terms of overall data storage

Not surprisingly, we adopted netcdf as our primary format However, we also utilize a few flat ASCII files where necessary


- . One needs to put/read netcdf files and netcdf library and include directories
- These MUST BE PROPERLY INSTALLED AND LINKED TO (see <u>http://www.unidata.ucar.edu/software/netcdf/</u>)
   If WRF is already installed and compiled, then this is take care of

### **General Requirements:**

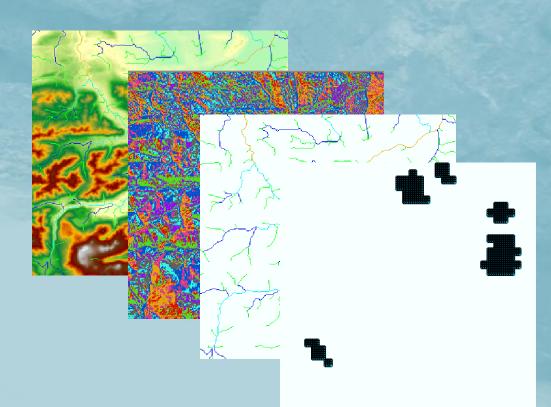
- Input files needed:
  - Standard WRF-Noah/NoahMP LSM grids (geogrid.exe))
  - 'wrfinput' file for initial conditions (real.exe or utility script)
  - One new netcdf file containing high resolution gridded routing information ('routing grid')
    - Topography, flowdirection, channel network, observation points, watersheds, stream order, calibration parameters
  - 1-3 new ASCII parameter tables depending on activated options (e.g. lake model, baseflow model, reach routing model)

### Inputs:

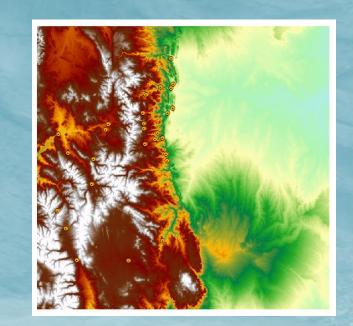
# Geogrid/LSM grid: a) LSM/geogrid data: Using WPS &/or Domain Wizard



 b) Fields used by WRF-Hydro: soil type, vegetation type, lake mask, green vegetation fraction/LAI, lat/lon, lower soil temperature...(see IDV...)

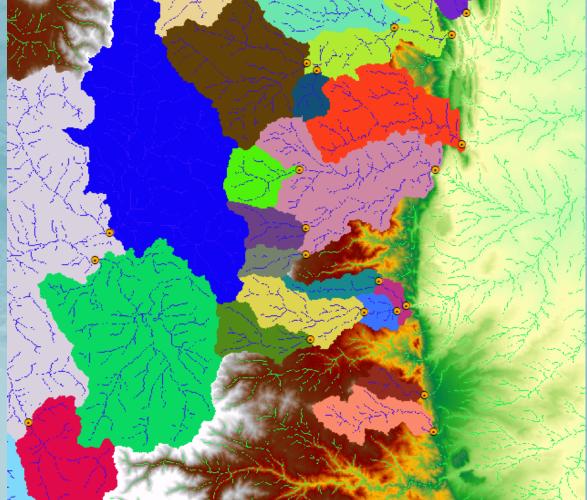

### Inputs:

### 1. Routing Grid:


a) High-resolution terrain routing grids: These data are on a fine-resolution terrain grid (~<100m) and are typically created within a GIS such as ArcGIS or manually...(with a little work)... details will be discussed this afternoon...

### b) Necessary variables are:

- LATITUDE
- LONGITUDE
- TOPGRAPHY
- FLOWDIRECTION
- CHANNELGRID
- STREAMORDER
- LAKEGRID
- frxst\_pts
- gw\_basns
- calibration fields




### WRF-Hydro 'Hydro-Grid' ArcGIS: Tool Output



Import: geogrid terrain

> Create: Hydrological routing grids



- Esri ArcCatalog or ArcMap applications
  - Add a user connection to the ArcGIS Server
  - Run the tool just like any other ArcGIS tool

Input Geogrid File

Input WRF Geogrid file

(NetCDF format).

Tool Help

– Inputs:

The

Natio

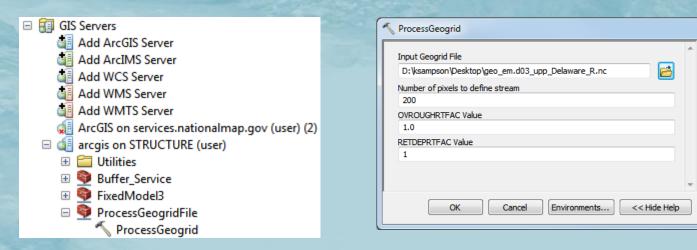
nal

Center

for

Atm 0

sphe


ri.

0

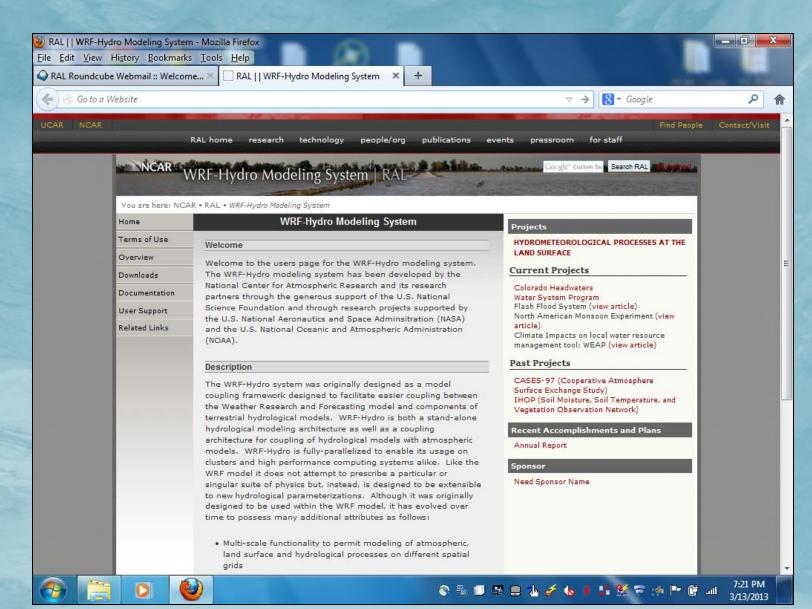
**Researc** 

Б

WRF geogrid file (NetCDF format) Additional parameters (defaults pre-set)



### **Tool Execution**


### **ArcGIS Stand-alone Tool Dialog Box:**

| § ProcessGeogridFile                   | 1-10 min.   |
|----------------------------------------|-------------|
| Input Geogrid File                     | to complete |
| Forecast Points (CSV) (optional)       | A State     |
|                                        |             |
| Mask CHANNELGRID to basins? (optional) |             |
| Input Raster                           |             |
|                                        |             |
| Regridding Factor                      |             |
| 10 Number of pixels to define stream   |             |
|                                        |             |
| Output ZIP File                        |             |
|                                        |             |
| × Parameter Values                     |             |
| ▼                                      | See 6       |
| OK Cancel Environments Show Help >>    |             |
|                                        |             |

## WRF-Hydro 'Hydro-Grid' Web Service: Tool Output

| File Edit View Tools Help |                              |                            |                 |                 |                 |             |
|---------------------------|------------------------------|----------------------------|-----------------|-----------------|-----------------|-------------|
|                           | e with 🔻 🛛 Burn 🛛 New folder |                            | := 🗸 🗍          | 0               |                 |             |
| ★ Favorites               | ^ Date modified              | Туре                       | Size            |                 |                 |             |
| 📃 Desktop                 | HMS.zip 1/22/2013 9:17 AM    | Compressed (zipped) Folder | 13,091 KB       |                 |                 |             |
| Downloads                 |                              |                            |                 | 124             |                 |             |
| 🕮 Recent Places           |                              |                            |                 |                 |                 |             |
| 📤 Google Drive            |                              |                            |                 |                 |                 |             |
|                           | G v II → ten                 | nporary > NDHMS.zip        |                 | •               | Search NDHMS.zi | ιp          |
| 🔁 Libraries 👻             | File Edit View T             | ools Help                  |                 |                 |                 |             |
| 1 item                    | Organize 🔻 Extr              | act all files              |                 |                 |                 | ≡ - 1       |
|                           | ☆ Favorites                  | A Name                     | Туре            | Compressed size | Password Size   | F           |
| -                         | 📃 Desktop                    | CHANNEL                    | GRID.nc NC File | 402 K           | B No            | 13,731 KB   |
|                           | Downloads                    | = 📢 flowdirect             | on.nc NC File   | 2,666 K         | B No            | 13,731 KB   |
|                           | 🖳 Recent Places              | 🖌 🚳 frxst_pts.n            | NC File         | 28 K            | B No            | 13,731 KB 1 |
|                           | 🙆 Google Drive               | gw_basns.                  | nc NC File      | 28 K            | B No            | 13,731 KB 1 |
|                           |                              | LAKEGRID                   | nc NC File      | 28 K            | B No            | 13,731 KB 1 |
|                           | 📜 🔚 Libraries                | 🚳 latitude.no              | NC File         | 317 K           | B No            | 27,419 KB   |
|                           | Documents                    | Iongitude.                 | nc NC File      | 1,505 K         | B No            | 27,419 KB   |
|                           | a) Music                     | ovroughrt                  | ac.nc NC File   | 41 K            | B No            | 27,419 KB 1 |
|                           | E Pictures                   | retdeprtfac                | .nc NC File     | 28 K            | B No            | 13,731 KB 1 |
|                           | Videos                       | 🕥 str_order.n              | c NC File       | 491 K           | B No            | 13,731 KB 9 |
|                           |                              | 🕥 topograph                | y.nc NC File    | 7,563 K         | B No            | 13,731 KB 4 |
|                           | 🖳 Computer                   |                            |                 |                 |                 |             |
|                           | 🏭 System (C:)                |                            |                 |                 |                 |             |
|                           | 👝 Backedup (D:)              |                            |                 |                 |                 |             |

### WRF-Hydro 'Hydro-Grid' ArcGIS tool:



### **Inputs: Model State Initialization**

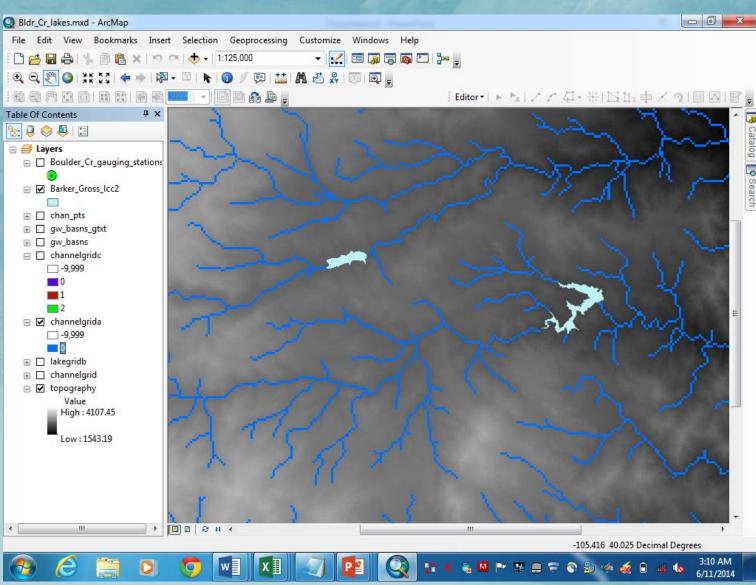
- 1. Initialization fields:
  - Total soil moisture content, soil liquid water content
  - Soil temperature
  - Canopy water content

\*For WRF-Hydro routing grids, either 'cold-start' or from restart files (groundwater level, surface water ponding, routing grid soil moisture...)

### 2. File creation options:

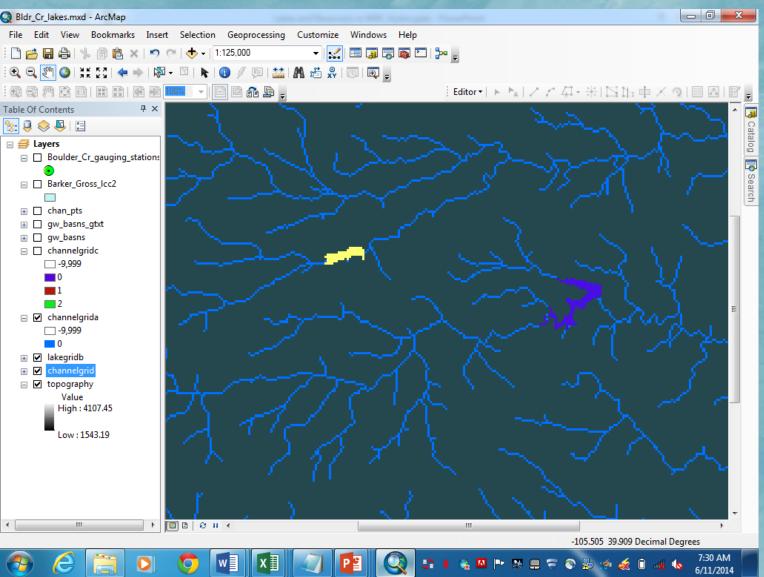
a) wrfinput file...created from WRF real.exe OR simple 'user-specified' script (mandatory but values may be over-written by restart files)b) Restart files...created from previous runs of WRF and/or WRF-Hydro

# Lakes and Reservoirs in WRF-Hydro


# Outline: Implementing lakes and reservoirs in WRF-Hydro

- On-channel reservoirs
- Level-pool storage
- Multiple discharge modes
  - Orifice flow
  - Spillway flow
  - Rule curve
  - Mgt. Schedule

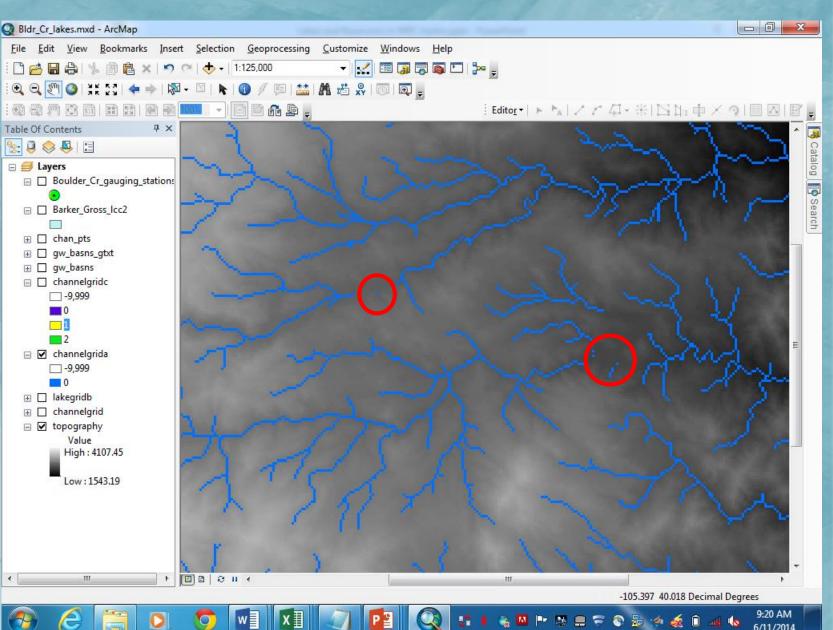
This procedure will help isolate problems which may otherwise be difficult and/or time-consuming to diagnose in many implementations:


## Implementing lakes and reservoirs in WRF-Hydro

1. After deriving channel network without reservoirs, overlay lake polygons on top of channel grid

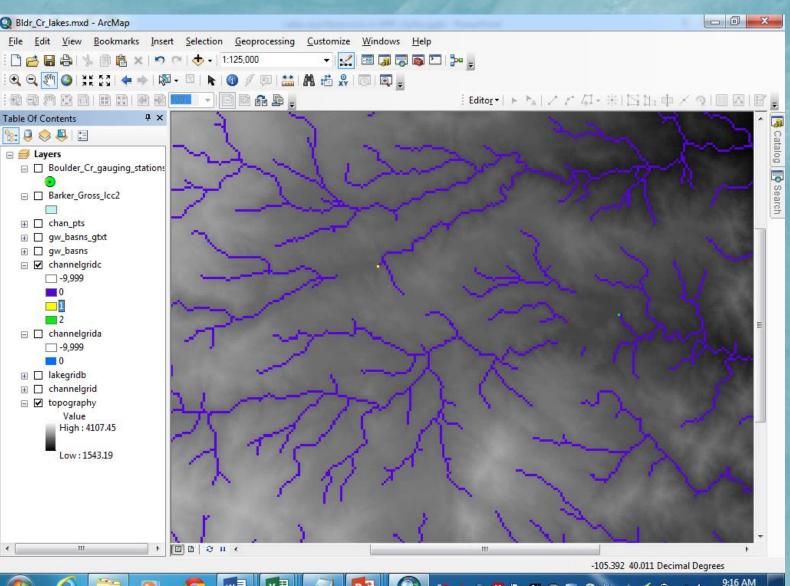


# Implementing lakes and reservoirs in WRF-


- Hydro
- 1. Convert lake polygon into grid at the same resolution and projection as the channel grid



# Implementing lakes and reservoirs in WRF-


# Hydro

- 1. Using lake grids as masks, then remove channel grid points 'underneath' lakes
- 2. If channel artifacts exist (see red circles), users will need to remove those by directing editing of grids or conversion to points



## Implementing lakes and reservoirs in WRF-Hydro

- 1. Need to change value of selected channel grid elements to specify where reservoir discharge is input into channel
- 2. Channel grid at reservoir discharge location has same index value as reservoir



## Implementing lakes and reservoirs in WRF-

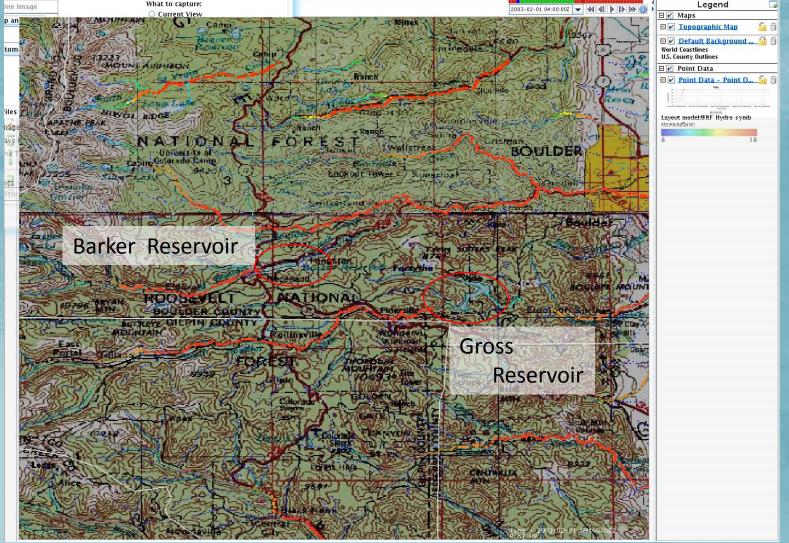
# Hydro

### 1. Parameter Table (LAKEPARM.TBL)

|             | 5 · 0 =                                                          | WRF_H                         | /dro_User_Guide_v2.0.d                  | locx [Compatibility M                 | ode] - Word             |         | ? 🗹 –             | a ×     |
|-------------|------------------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|-------------------------|---------|-------------------|---------|
| FILE        | HOME INSERT DESIG                                                | SN PAGE LAYOUT                | REFERENCES MAIL                         | LINGS REVIEW                          | VIEW                    |         | David Goch        | nis 🕶 🔍 |
| 📥 X         | Times New Ro - 14 - A                                            | 🖍 🗛 - 🚷 🔚 - 🛔                 | - * * 문 * 문 * 문 * 문 * 문 * 문 * 문 * 문 * 문 |                                       | bl AaBbCcI AaBbCcI      | AaR ^   | 👫 Find 🔹          |         |
| Paste       |                                                                  |                               |                                         |                                       |                         | Ť       | ab<br>Gac Replace |         |
| - V         | <b>B</b> $I  \underline{U} \neq abc  \mathbf{X}_2  \mathbf{X}^2$ | ⋒ • <u>*</u> • <u>A</u> • ≡ ≡ |                                         | • • • • • • • • • • • • • • • • • • • | ig 1 1 Normal 1 No Spac | Title 🚽 | Select ▼          |         |
| Clipboard 6 | Font                                                             | Es.                           | Paragraph                               | En l                                  | Styles                  | G.      | Editing           | ~       |
|             |                                                                  |                               |                                         |                                       |                         |         |                   |         |

#### A7. Lake parameters table (LAKEPARM.TBL)

#### LAKEPARM.TBL


| lake | LkArea LkMxH WeirC          |                       | OrificeA | OrificeE |
|------|-----------------------------|-----------------------|----------|----------|
| 1    | lat long<br>9.67 1752.1 0.4 | elevation<br>12.1 0.1 | 1.0      | 1664.4   |
| 1    | 40.5580 -105.1586           | 1752.1                | 1.0      | 1001.1   |
| 2    | 3.07 1530.8 0.4             | 3.8 0.1               | 1.0      | 1519.6   |
|      | 40.4407 -105.0586           | 1530.8                |          |          |
| 3    | 1.61 1537.7 0.4             | 2.0 0.1               | 1.0      | 1528.7   |
|      | 40.4158 -105.0903           | 1537.7                |          |          |
| 4    | 1.11 1554.6 0.4             | 1.4 0.1               | 1.0      | 1544.4   |
|      | 40.3876 -105.1441           | 1554.6                |          |          |
| 5    | 3.82 1785.1 0.4             | 4.8 0.1               | 1.0      | 1758.2   |
|      | 40.3377 -105.2196           | 1785.1                |          |          |
| 6    | 1.36 1569.5 0.4             | 1.7 0.1               | 1.0      | 1565.6   |
|      | 40.3378 -105.1278           | 1569.5                |          |          |
| 7    | 1.47 1571.1 0.4             | 1.8 0.1               | 1.0      | 1565.3   |
|      | 40.3297 -105.1167           | 1571.1                |          |          |

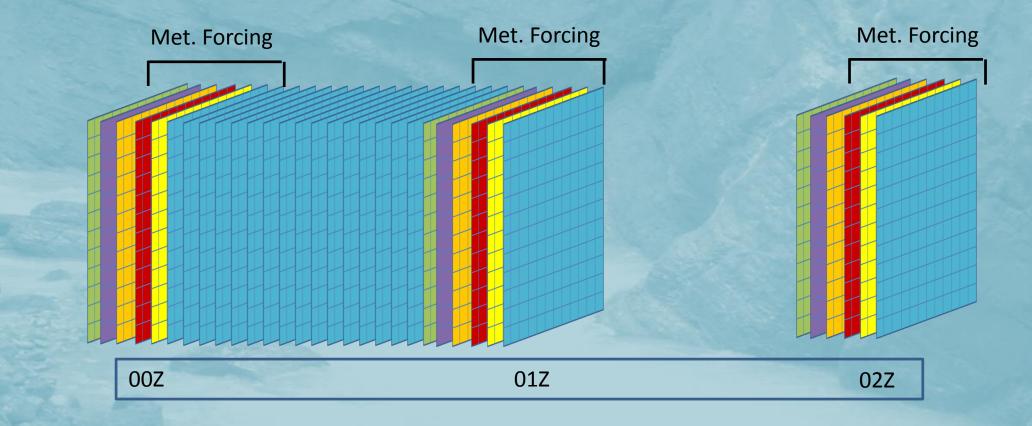
- this example assumes there are 7 lakes defined within the simulation domain (note column wrapping...)



# Implementing lakes and reservoirs in WRF-Hydro

1. Visualization of lake impacts




# **WRF-Hydro Forcing Data:**

### • Forcing Inputs:

- Temperature (deg K), humidity-mixing ratio (kg/kg), short & longwave radiation (W/m^2), pressure (Pa), wind speed (m/s) and precipitation rate (mm/s)
- Optional formats of forcing data:
  - Fully-coupled model
  - Existing wrf output files
  - Unified analysis (all met. variables together Netcdf file, e.g. NLDAS-hourly)
  - Specified precipitation (Netcdf file , precipitation comes from alternate source, e.g. radar, satellite, gauge analysis)

ALL FORCING DATA IS MAPPED TO SAME GRID (based on WRF 'geogrid') SPECIFIED PRECIPITATION MAY HAVE HIGHER TIME RESOLUTION (e.g. 5min)

- Data Requirements:
  - Forcing Input: Forecast Example...



- Data Pre-processing Options:
  - Several utilities for formatting and creating 'forcing' data:
    - Using netcdf as the underlying data model...
    - One file per forcing input time...
    - Direct use or simple regrid of existing wrf output
    - ESMF/ncl scripts for conservative regridding of data between structured or unstructured grids, ASCII-netcdf formats, etc.
    - nco-based shell scripts to change variable names, threshold units, re-order grids, etc
    - HRLDAS tools for preparing forcing with topographic adjustment

\* BEST PRACTICE: Use as high of time-resolution forcing data as possible! (particularly rainfall)

 netcdf forcing input file header...(see documentation Appendix A11)
 A11. Forcing data netcdf file header

netcdf \201111040900 { dimensions: Time = UNLIMITED : // (1 currently) south north = 475; west\_east = 475 : variables: float Q2D(Time, south\_north, west\_east); Q2D:FieldType = 104 ; Q2D:MemoryOrder = "XY " ; Q2D:description = "QV at 2 M"; Q2D:units = "kg kg-1"; Q2D:stagger = ""; Q2D:coordinates = "XLONG XLAT"; float T2D(Time, south north, west east); T2D:FieldType = 104; T2D:MemoryOrder = "XY "; T2D:description = "TEMP at 2 M" ; T2D:units = "K" ; T2D:stagger = ""; T2D:coordinates = "XLONG XLAT" ; float SWDOWN(Time, south north, west, east) ; SWDOWN:FieldType = 104; SWDOWN:MemoryOrder = "XY " : SWDOWN:description = "DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE" ; SWDOWN:units = "W m-2"; SWDOWN:stagger = ""; SWDOWN:coordinates = "XLONG XLAT" ; float LWDOWN(Time, south north, west east) ;

# **WRF-Hydro Output Data:**

### **WRF-Hydro Outputs:**

### 1. Model Outputs:

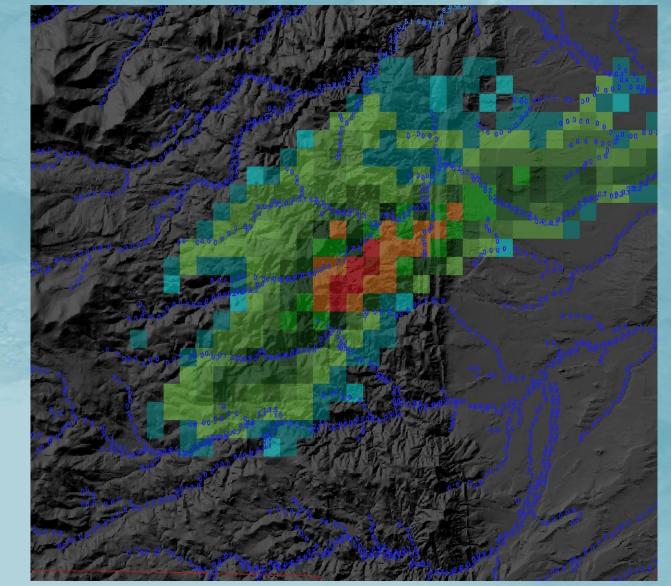
a) Standard WRF model output, when run in coupled mode...

### b) LSM gridded output (netcdf)

### c) Routing outputs:

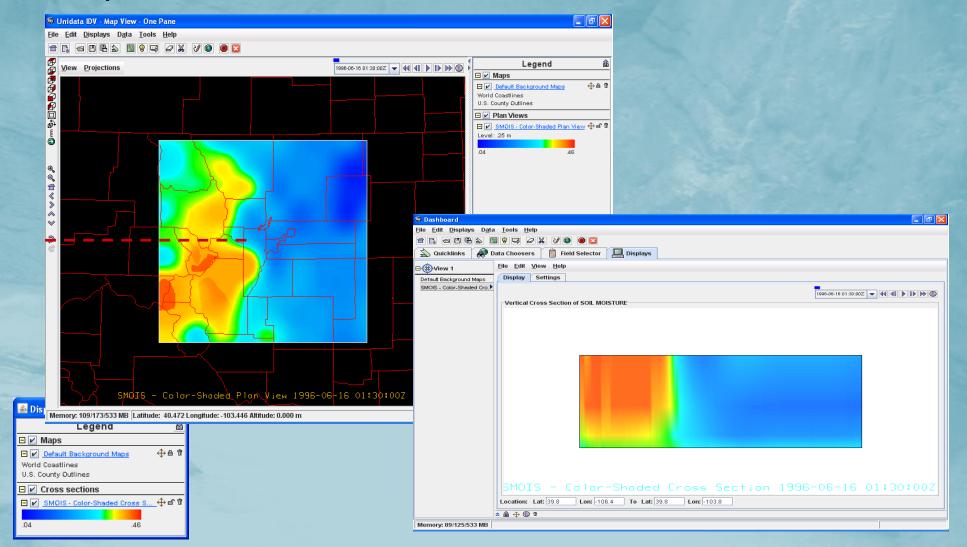
- a) High resolution gridded output (netcdf, not common due to filesize)
- b) Channel-inflow (ascii timeseries)
- c) Station observations (netcdf point file AND ascii timeseries)
- d) Full channel network output (netcdf point file)
- e) Lake/reservoir output (netcdf point file)
- f) Groundwater/baseflow output (3 ascii timeseries files)

### **WRF-Hydro Outputs:**


Standard WRF/LSM outputs: (IDV visualization)

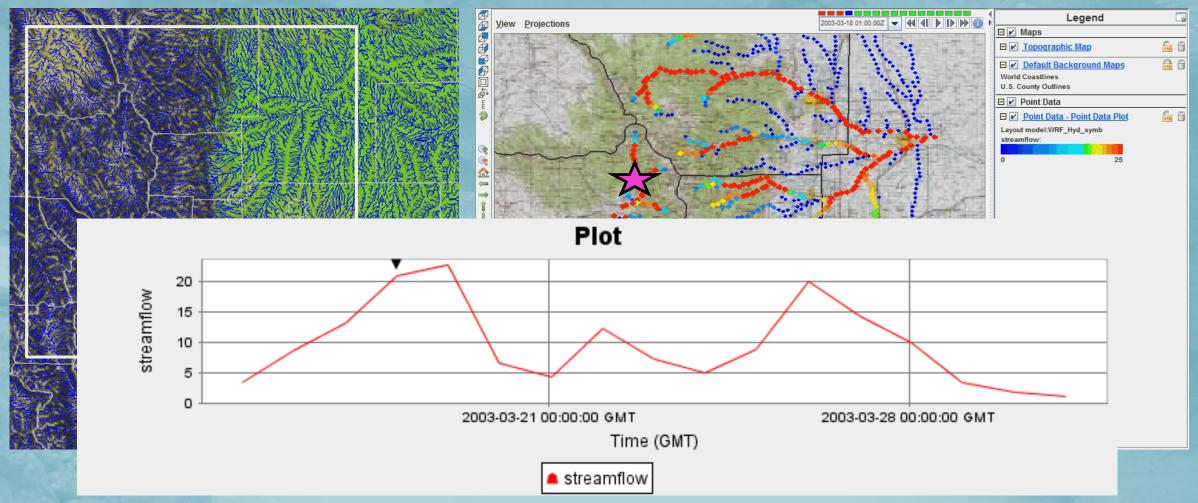


### **WRF-Hydro Outputs:**


- 'Hydro'-specific data:
  - Ponded water
  - Streamflow
  - Water table depth

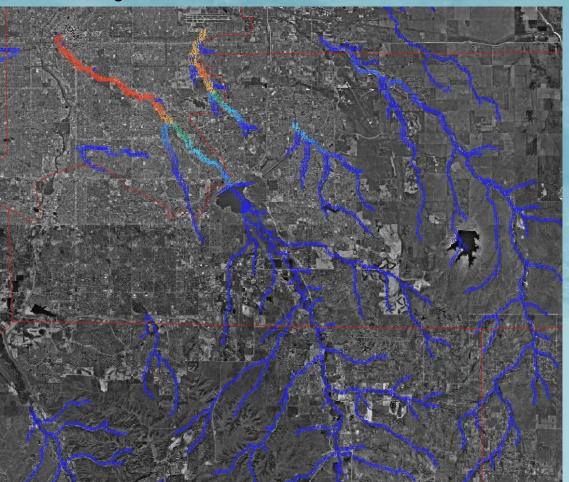
#### IDV – overlays of accumulated rainfall and streamflow




### **WRF-Hydro output products: IDV**

Soil moisture plan view and vertical cross-section

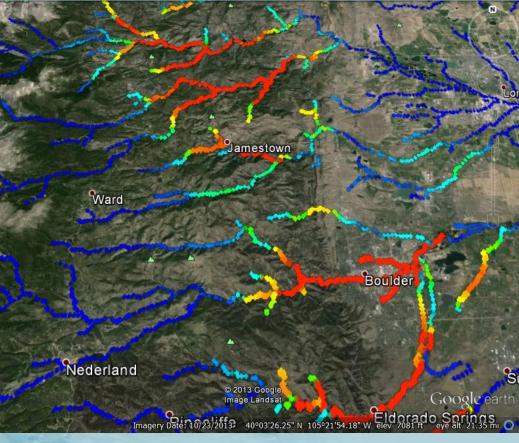


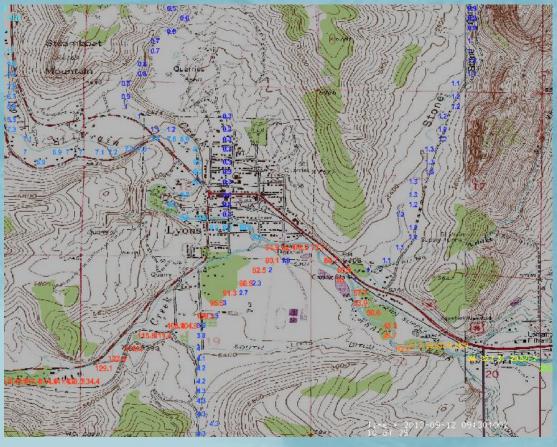

# WRF-Hydro output products: Additional examples...IDV

Channel Flows at spatial resolutions of 10s to 100s of meters



# WRF-Hydro output products: Additional examples...IDV


**Urban Flooding: Genoa-2011** 




#### **Northwest Mexico**

Rio Sonora/Rio San Miguel Modeled Streamflow Jul. 21-22, 2004

# WRF-Hydro output products: Additional examples...





### **Google Earth (kmz)**

**GIS map overlays** 

### **WRF-Hydro output tools: other options**

- ncview, NASA-Panoply: general netcdf file viewers
- ncl (NCAR command language): good all purpose netcdf-based analysis and visualization scripting language
- ArcGIS, qGIS: Good for integrating with other GIS data layers, have scripts to support import and projection definition for ArcGIS
- R : just getting started, building scripting capabilities for streamflow forecast verification and general time-series analysis and some graphing