Use of a fully distributed triangulated irregular network hydrologic model in climate change and ecohydrological studies

Giuseppe Mascaro

1st European Fully Coupled Atmospheric-Hydrological Modeling and WRF-Hydro Users Workshop June 11-13, 2014 Rende, Italy

Outline

1. The tRIBS hydrologic model

Acknowledgments:

Rafael Bras, Enrique R. Vivoni, Valeriy Ivanov, Sue Mniszewski, and Patricia Fasel

2. Study of climate change impacts in a Mediterranean basin

<u>Acknowledgments</u>:

Monica Piras, Roberto Deidda and Enrique R. Vivoni

3. Ecohydrological study of a regional basin in northwest Mexico

<u>Acknowledgments</u>: Luis Mendez-Barroso and Enrique R. Vivoni

Outline

1. The tRIBS hydrologic model

Acknowledgments:

Rafael Bras, Enrique R. Vivoni, Valeriy Ivanov, Sue Mniszewski, and Patricia Fasel

2. Study of climate change impacts in a Mediterranean basin

<u>Acknowledgments</u>:

Monica Piras, Roberto Deidda and Enrique R. Vivoni

3. Ecohydrological study of a regional basin in northwest Mexico

<u>Acknowledgments</u>: Luis Mendez-Barroso and Enrique R. Vivoni

The TIN-based Real-Time Integrated Basin Simulator (tRIBS)

distributed and physically-based hydrologic model

- Heritage from Real-time Integrated Basin Simulator (**RIBS**, *Garrote and Bras* 1995) and Channel-Hillslope Integrated Landscape Development (**CHILD**, *Tucker et al.*, 2001).
- Coupled vadose and saturated zones with dynamic water table.
- ➡ Radiation and energy balance.
- ➡ Interception and evaporation.
- Hydrologic and hydraulic routing.
- ➡ C++ code.

Ivanov et al. (2004a,b), Vivoni et al. (2004)

Terrain is represented through Triangulated Irregular Networks (TINs).

0.25

0.2

ADD 0.15 0.1

0.05

200

300

400

Elevation (m)

500

600

<u>Advantages:</u>

- Multiple-resolution terrain modeling.
- Conserves DEM statistical properties.
- Preserves linear features (boundary, stream network).
- Adds degrees of freedom in flow and transport.

Vivoni et al. (2004; 2005)

The model domain consists of **Voronoi polygons** derived from the TIN.

- Hydrologic flow routing based on TIN node connectivity.
- Surface and subsurface fluxes over TIN edges and across Voronoi faces.
- Hydrologic mass balances computed for Voronoi polygon area.

Schematic illustrating tRIBS Data Flowchart and Capabilities.

Modified Green-Ampt scheme for sloped, anisotropic soil column developed by Cabral et al (1992) and Ivanov (2002).

One-Dimensional Infiltration

• Saturated hydraulic conductivity decreases normally with depth:

 $K_s(n) = K_{on}(n) \exp(-fn)$

• Brooks-Corey parameterization of unsaturated hydraulic conductivity:

$$K_u(n) = K_s(n) \frac{(\theta - \theta_r)^{\varepsilon}}{(\theta_s - \theta_r)}$$

• Soil column considered anisotropic:

$$a_r = \frac{K_{op}}{K_{on}} > 1$$

• Gravity dominance assumed in unsaturated moisture profile.

Rainfall and evaporative forcing at the land-surface interact with preexisting soil moisture profile and water table.

Multiple direction flow in **groundwater component** allows moisture recharge in shallow aquifer to be redistributed.

Variable, dynamic water table field

Shallow Groundwater

- Space/time variable <u>groundwater</u> <u>table position</u>.
- Single and <u>multiple direction flow</u> to downstream neighbors.
- <u>Coupled to unsaturated zone</u> to enable moisture mass balance.
- Bounded by a uniform or spatiallyvariable <u>bedrock surface</u>.
- <u>Transmissivity</u> is a function of depth to bedrock, depth to water table, and aquifer hydraulic properties.

A range of runoff generation mechanisms is represented in the model as a result of the **unsaturated-saturated dynamics**.

Hillslope runoff processes

Beven (2001) Rainfall-Runoff Modeling

The model solves the **coupled energy and hydrologic balance**.

Atmosphere-Land-Aquifer Interactions

Coupled Energy and Hydrology Processes on Complex Terrain

Radiation: Incoming short-wave and long-wave, outgoing long-wave radiation including effects of terrain.

Vegetation: Canopy interception, drainage, throughfall and evaporation using vegetation functional type.

Energy Balance: Net radiation, ground heat, sensible heat and latent heat fluxes.

Evapotranspiration: Soil-moisture controls bare soil evaporation and canopy transpiration in root zone.

Hydrologic routing on **hillslopes** is tied to channel node discharge where a **1-D hydraulic channel routing** scheme is used.

Model outputs include time series at distributed locations and spatial maps

Recent improvement: use of High Performance Computing for

high-resolution distributed hydrological modeling

Test the speedup in real-world simulations as a function of the number of processors, basin size and variability of forcing.

Surface-subsurface flow partitioning

Identify the best domain partitioning to optimize allocation of computational resources.

Vivoni et al. (2011)

Outline

1. The tRIBS hydrologic model

Acknowledgments:

Rafael Bras, Enrique R. Vivoni, Valeriy Ivanov, Sue Mniszewski, and Patricia Fasel

2. Study of climate change impacts in a Mediterranean basin

Acknowledgments:

Monica Piras, Roberto Deidda and Enrique R. Vivoni

3. Ecohydrological study of a regional basin in northwest Mexico

<u>Acknowledgments</u>: Luis Mendez-Barroso and Enrique R. Vivoni

Motivation of Climate Change Study

★ Mediterranean areas are highly sensitive to climate variability and this vulnerability has significant impacts on water resources and hydrologic extremes.

★ Future climate projections depict a further decrease of water availability, with impact on agriculture.

Our study site is the Rio Mannu basin (RMB), Sardinia, Italy

Problem:

Scale gap between resolution of climate model outputs and resolution required by the hydrological model.

GCM	Hadley Centre for Climate Prediction, Met Office, UK	НСН
GCM	Max Planck Institute for Meteorology, Germany ECHAM5 / MPI OM	ECH
RCM	Swedish Meteorological and Hydrological Institute (SMHI), SwedenRCA Model	RCA
RCM	Max Planck Institute for Meteorology, Hamburg, Germany- REMO Model	REM
RCM	Koninklijk Nederlands Meteorologisch Instituut (KNMI), Netherlands RACMO2 Model	RMO

Solution: Use of two downscaling techniques for P and ET_{θ} .

Precipitation Downscaling

Precipitation downscaling with a multifractal model

data at 1-min res from 204 gages (1986-1995).

Precipitation Downscaling

Precipitation downscaling with a multifractal model

★ The tRIBS hydrologic model was calibrated with historical daily observations using two downscaling tools.

- → Calibration in 1930 and validation in 1931-1932 (spin-up interval of 2 years).
- ➡ Model parameters, with focus on K_s and f, were manually tuned. Most values were derived from the literature.

★ The tRIBS hydrologic model was calibrated with historical daily observations using two downscaling tools.

- → Calibration in 1930 and validation in 1931-1932 (spin-up interval of 2 years).
- Model parameters, with focus on K_s and f, were manually tuned. Most values were derived from the literature.

★ The climate simulations were carried out in a reference (REF, 1971-2000) and future (FUT, 2041-2070) period.

A total of 256 years of simulations were conducted with the parallel code in Saguaro cluster at ASU.

Change in *P*, *T* and *Q*

Change in climate forcings:

Change in *P*, *T* and *Q*

Change in climate forcings:

Change in *P*, *T* and *Q*

Change in climate forcings:

Change in potential (ET_{θ} **) and real evapotranspiration (** ET_R **), and soil water content (**SWC**) in the root zone:**

- ★ Increasing ET_0 (annual mean of +3.7%), due to higher T.
- **★** Decreasing ET_R (mean of -2.0%).

Change in potential (ET_{θ} **) and real evapotranspiration (** ET_R **), and soil water content (**SWC**) in the root zone:**

- ★ Increasing ET_0 (annual mean of +3.7%), due to higher T.
- **★** Decreasing ET_R (mean of -2.0%).

- ★ Decreasing ET_R due to diminishing *SWC* (-5.1%).
- **\star** Diminishing *SWC* due to decreasing *P*.
- ★ Results consistent with Senatore et al. 2011 (JH).

★ Multiple climate scenario allowed characterizing <u>uncertainty of</u> <u>future climate projections</u>.

- ★ Multiple climate scenario allowed characterizing <u>uncertainty of</u> <u>future climate projections</u>.
- ★ Downscaling techniques allowed increasing the spatial and temporal resolution of climate model outputs.

- ★ Multiple climate scenario allowed characterizing <u>uncertainty of</u> <u>future climate projections</u>.
- ★ Downscaling techniques allowed increasing the spatial and temporal resolution of climate model outputs.
- ★ The use of a process-based hydrologic model allowed simulating the complex rainfall-runoff process of a Mediterranean basin in distributed fashion.

- ★ Multiple climate scenario allowed characterizing <u>uncertainty of</u> <u>future climate projections</u>.
- ★ Downscaling techniques allowed increasing the spatial and temporal resolution of climate model outputs.
- ★ The use of a process-based hydrologic model allowed simulating the complex rainfall-runoff process of a Mediterranean basin in distributed fashion.
- ★ Expected <u>impacts</u> due to future climate on <u>water resources</u> and hydrology:
 - Reduction of runoff volume.
 - ➡ Intensification of extremes.
 - → Spatially-variable decreasing *SWC* and *ET_R*.

- ★ Multiple climate scenario allowed characterizing <u>uncertainty of</u> <u>future climate projections</u>.
- ★ Downscaling techniques allowed increasing the spatial and temporal resolution of climate model outputs.
- ★ The use of a process-based hydrologic model allowed simulating the complex rainfall-runoff process of a Mediterranean basin in distributed fashion.
- ★ Expected <u>impacts</u> due to future climate on <u>water resources</u> and hydrology:
 - Reduction of runoff volume.
 - ➡ Intensification of extremes.
 - → Spatially-variable decreasing SWC and ET_R .
- ★ <u>Utility for stakeholders</u>: estimation of agricultural productivity, design of infrastructures, land use planning, and touristic sector, among others.

Outline

1. The tRIBS hydrologic model

Acknowledgments:

Rafael Bras, Enrique R. Vivoni, Valeriy Ivanov, Sue Mniszewski, and Patricia Fasel

2. Study of climate change impacts in a Mediterranean basin

<u>Acknowledgments</u>:

Monica Piras, Roberto Deidda and Enrique R. Vivoni

3. Ecohydrological study of a regional basin in northwest Mexico

<u>Acknowledgments</u>: Luis Mendez-Barroso and Enrique R. Vivoni

We used tRIBS to investigate the ecosystem control on hydrologic fluxes and states in the **Rio San Miguel** (**RSM**) basin, Mexico.

★ Semiarid climate.

★ Complex topography.

★ Dramatic vegetation greening during the North American Monsoon (NAM).

Evergreen Woodland (EW)

Subtropical Scrubland (SS)

Grassland (G)

Sparse Woodland (SW)

Dataset

- ★ Period of hydrologic simulation: Jan 2004 Dec 2010.
- ★ Hydrometeorological forcing from North American Land Data Assimilation Systems (NLDAS) at 12 km - 1 h; <u>bias-corrected</u>.
- *** Time-varying vegetation parameters** derived from MODIS.
- **★ Cal-Val:** (i) **soil moisture** (*θ*) observations at 9 stations and 2D-STAR airborne-sensor; (ii) **Land Surface Temperature** (LST) from MODIS.

Model Calibration and Validation

- ★ <u>TIN of 624,716</u> <u>nodes.</u>
- ★ Point calibration (summer 2004) of soil parameters against θ at the 9 stations.

ST	BIAS (%)	MAE (m ³ /m ³)	CC (-)	
147	-2.6	0.012	0.91	
130	17.9	0.013	0.94	
132	5.1	0.016	0.91	
133	5.8	0.015	0.95	
144	-1.3	0.021	0.95	
154	4.5	0.015	0.90	
146	27.7	0.024	0.94	
151	-10.8	0.026	0.91	
143	-21.7	0.033	0.85	

Model Calibration and Validation

- ★ <u>TIN of 624,716</u> <u>nodes.</u>
- ★ Point calibration (summer 2004) of soil parameters against θ at the 9 stations.

 \star Validation

(summer 2007) at the stations with point and basin simulations.

		Validation Point Sim			Validation Basin Sim				
ST	BIAS (%)	MAE (m ³ /m ³)	CC (-)	BIAS (%)	MAE (m³/m³)	CC (-)	BIAS (%)	MAE (m ³ /m ³)	CC (-)
147	-2.6	0.012	0.91	12.1	0.012	0.95	51.3	0.036	0.69
130	17.9	0.013	0.94	-12.4	0.016	0.92	91.7	0.034	0.78
132	5.1	0.016	0.91	-17.4	0.017	0.88	56.6	0.034	0.76
133	5.8	0.015	0.95	-5.0	0.019	0.94	58.8	0.038	0.85
144	-1.3	0.021	0.95	-2.7	0.016	0.93	49.6	0.071	0.80
154	4.5	0.015	0.90	-23.8	0.026	0.89	9.0	0.027	0.89
146	27.7	0.024	0.94	17.7	0.029	0.84	72.8	0.060	0.70
151	-10.8	0.026	0.91	-18.2	0.038	0.84	16.0	0.025	0.95
143	-21.7	0.033	0.85	-40.4	0.062	0.94	42.5	0.076	0.59

Model Validation

*** Validation** against 2D-STAR θ and MODIS LST.

★ <u>Wet day: Aug 8</u>

	RMSE	BIAS	СС	
	(m ³ /m ³)	(°C)	(-)	
θ	0.10	0.08	0.02	
LST	4.5	-1.7	0.52	

* <u>Dry day: Aug 25</u>

	RMSE	BIAS	СС	
	(m³/m³)	(°C)	(-)	
θ	0.04	-0.006	0.08	
LST	4.9	1.2	0.64	

Basin-averaged model outputs:

Basin-averaged model outputs:

Basin-averaged model outputs:

Model outputs		Summer		Winter	
	Ecosystem	< 0>	<i><et></et></i>	< 0>	<i><et></et></i>
averaged on	G (6%)	0.14	306	0.06	74
ecosystems:	SW (37%)	0.14	294	0.06	76
	EW (4%)	0.15	269	0.05	75
	SS (49%)	0.13	271	0.05	73

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

July

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

July

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

July

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

July

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

July

Investigation of **rainfall recycling** through the **spatiotemporal evolution of** *ET/P* in summer:

Thank you!