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Hydrologic Model

➡ Heritage from Real-time 
Integrated Basin Simulator 
(RIBS, Garrote and Bras 
1995) and Channel-Hillslope 
Integrated Landscape 
Development (CHILD, Tucker 
et al., 2001). 

➡ Coupled vadose and saturated 
zones with dynamic water 
table.

➡ Radiation and energy balance.
➡ Interception and evaporation.
➡ Hydrologic and hydraulic 

routing.
➡ C++ code.

The TIN-based Real-Time Integrated Basin Simulator (tRIBS) 
distributed and physically-based hydrologic model

Ivanov et al. (2004a,b), Vivoni et al. (2004)



Hydrologic Model

Terrain is represented through Triangulated Irregular Networks (TINs).

Baron 
Fork, OK

808 km2

54,438 nodes
(6% 30-m DEM)

Advantages: 

• Multiple-resolution terrain modeling. 

• Conserves DEM statistical 
properties.

• Preserves linear features (boundary, 
stream network). 

• Adds degrees of freedom in flow 
and transport. 

Vivoni et al. (2004; 2005)

 High-resolution 
in saturated 
floodplains

 Low-resolution 
in dry hillslopes

Fig. 11. Comparison of frequency distributions of elevation !top left", slope !top right", curvature !bottom left" and topographic index !bottom
right" of the digital elevation model !DEM" and triangulated irregular network !TIN" terrain models for the Baron Fork watershed. Included are
the original U.S. Geological Survey 30-m DEM, a DEM aggregation at 112-m resolution, a hydrographic TIN model and a hydrological similarity
TIN model !labeled hydrologic TIN".

Fig. 12. Comparison of frequency distributions of terrain attributes for Peacheater Creek watershed sampled directly from the Baron Fork
models. Included are the original U.S. Geological Survey 30-m digital elevation model !DEM", a DEM aggregation at 112-m resolution, a
hydrographic triangulated irregular network !TIN" and a hydrological similarity TIN !labeled hydrologic TIN".
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Hydrologic Model

The model domain consists of Voronoi polygons derived from the TIN.

• Hydrologic flow routing based on 
TIN node connectivity.

• Surface and subsurface fluxes over 
TIN edges and across Voronoi faces.

• Hydrologic mass balances computed 
for Voronoi polygon area. 

Dual diagram

Voronoi cell

Triangle



Hydrologic Model

Schematic illustrating tRIBS Data Flowchart and Capabilities.



Hydrologic Model
Modified Green-Ampt scheme for sloped, anisotropic soil column 
developed by Cabral et al (1992) and Ivanov (2002).

Slope, Heterogeneous, 
Anisotropic Soil Column at 

each Voronoi Element 

One-Dimensional Infiltration  

•  Saturated hydraulic conductivity 
decreases normally with depth: 

•  Brooks-Corey parameterization of 
unsaturated hydraulic conductivity: 

•  Soil column considered anisotropic: 

•  Gravity dominance assumed in 
unsaturated moisture profile. 
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Hydrologic Model
Rainfall and evaporative forcing at the land-surface interact with pre-
existing soil moisture profile and water table.

Fully 
Saturated 

state 

Perched-
saturated 

state 

Initial 
state 

Moisture 
Front 

Moisture 
Redistribution 

Surface-
saturated 

state 



Hydrologic Model
Multiple direction flow in groundwater component allows moisture 
recharge in shallow aquifer to be redistributed. 

Shallow Groundwater 

• Space/time variable groundwater 
table position.

• Single and multiple direction flow 
to downstream neighbors.

• Coupled to unsaturated zone to 
enable moisture mass balance.

• Bounded by a uniform or spatially-
variable bedrock surface.

• Transmissivity is a function of 
depth to bedrock, depth to water 
table, and aquifer hydraulic 
properties. 

Variable, dynamic 
water table field



Hydrologic Model
A range of runoff generation mechanisms is represented in the model as a 
result of the unsaturated-saturated dynamics.

Infiltration-excess runoff 

Saturation-excess runoff 

Subsurface storm runoff 

Perched return runoff 
USGS Circular 1139 

Hillslope runoff processes 

Surface-Groundwater Interactions in 
different Landscapes and Scales 

Coastal 

Mountain 

Riverine 

Lake 

Shallow groundwater 

Beven (2001) Rainfall-Runoff Modeling 



Hydrologic Model

The model solves the coupled energy and hydrologic balance.

Atmosphere-Land-Aquifer Interactions 

Vegetation 

Soil 

Aquifer 

3D Complex 
Topography 

Rn = Rs + Rli - Rlo 

Radiation Balance 

Rn – G = !E + H 
Energy Balance 

Coupled Energy and Hydrology 
Processes on Complex Terrain 

Radiation: Incoming short-wave and 
long-wave, outgoing long-wave 
radiation including effects of terrain. 

Vegetation: Canopy interception, 
drainage, throughfall and evaporation 
using vegetation functional type.

Energy Balance: Net radiation, 
ground heat, sensible heat and latent 
heat fluxes.

Evapotranspiration: Soil-moisture 
controls bare soil evaporation and 
canopy transpiration in root zone. 



Hydrologic Model
Hydrologic routing on hillslopes is tied to channel node discharge 
where a 1-D hydraulic channel routing scheme is used. 



Hydrologic Model

Ivanov et al. (2004a,b)

Figure 17. Frequency of runoff occurrence as percentage of the total run time over 33 months of
simulation for Baron Fork (OK). (a) Infiltration excess runoff. (b) Saturation excess runoff.

20 of 23

W11102 IVANOV ET AL.: CATCHMENT HYDROLOGIC RESPONSE WITH A TIN W11102

composition of the seasonal streamflow based on
partitioning into runoff types is analyzed next to
further check the simulation consistency.

5. Model performance

The following results demonstrate several aspects of
distributed, physically-based modelling of continuous

catchment hydrology. A wide range of hydrologic
variables integrated over various time and space scales
is illustrated. Lumped representation of the basin
dynamics, or the streamflow, in many cases is the
only available verifiable measure of the model
performance (the only one required for use in the
DMIP study). The illustrated spatiotemporal fields of
state variables offer new means for validating the
simulated dynamics. Relationships, derived from

Fig. 3. An excerpt from a continuous run for Baron Fork illustrating simulation skills for the catchment outlet (a) and nested gaged locations:

Peacheater Creek (b), and Baron Fork at Dutch Mills (c). The total period covers 5.5 months (09/21/1996–03/06/1997). The interstorm period,
that occured between days 80 and 146, is not shown. The scale of y-axis on the right-side and left-side plots are different.

V.Y. Ivanov et al. / Journal of Hydrology 298 (2004) 80–111 91

Baron Fork at Eldon

Baron Fork at Peacheater Creek

Baron Fork at Dutch Mill

Baron Fork 
at Eldon

Baron Fork at 
Peacheater Creek

Baron Fork at 
Dutch Mill

Model outputs include time series at distributed locations and spatial maps



Recent improvement: use of High Performance Computing for 
high-resolution distributed hydrological modeling

Test the speedup in real-world 
simulations as a function of the 

number of processors, basin size 
and variability of forcing.

Author's personal copy

in the two PE cases, however, are not consistent across p, likely due
to the low complexity (low nr). Nevertheless, S[n,p] improved con-
siderably for the SF (+19%) and SSF (+33%) methods, as compared
to the Def partitioning. The improvements achieved with SF and
SSF are even larger for the BF d = 0.07 case, with an 83% higher
S[n,p] than the Def partitioning, and with a factor of 2 higher
S[n,p] at p = 64. As a result, the speed-up with the SF and SSF par-
titioning at p = 64 nearly doubles the Def performance for the same
conditions at p = 256 (Fig. 7c).

The comparison of the two cases with the same nt (PE, d = 0.94
and BF, d = 0.07) in Fig. 9 is also instructive. Note that each parti-
tioning has higher S[n,p] for the case BF, d = 0.07, across most p,
with increases of +8% (Def), +49% (SF), and +47% (SSF), on average.
Given the same nt, this implies the channel network extent (nr)
plays major role in the parallel performance. Thus, it would be
possible to increase speed-up in a given basin by: (1) decreasing
the resolution, nt, and/or (2) extending the channel network, nr,
within certain limits set by the potential impacts on the hydrologic

performance (e.g., Vivoni et al., 2005a). A comparison of the results
in Fig. 9 indicates that higher speed-up is achieved with variations
in nr, relative to nt, in particular for the SF and SSF methods. For
example, the S[n,p] improvements due to increases in nr amount
to +145% (SF) and +126% (SSF) at p = 64 when a denser channel
network (BF, d = 0.07) is present in a basin, as compared to the
similarly-sized domain (PE, d = 0.94).

The speed-ups achieved through the sub-basin partitioning
methods are further explored in Fig. 10. Here, illustrations of the
Def (a), SF (b) and SSF (c) partitioning are presented for the largest
complexity (BF, d = 0.98, nr = 5707) for p = 32 processors. The TIN
nodes assigned to each processor, classified as the number of
processor ranging from 0 to 31, are shown with a different color,
as visualized in the ParaView module. Note the large spatial
differences between the Def and the SF and SSF partitioning. The
upstream-to-downstream order of the Def partitioning results
in distant TIN nodes located on the same processor. The load-
balancing methods yield groupings of closely-spaced TIN nodes

Fig. 10. Spatial maps of sub-basin partitioning methods applied to the Baron Fork (d = 0.98, nt = 878,211, nr = 5707) for p = 32 processors. (a) Default (Def). (b) Surface Flow
(SF). (c) Surface–Subsurface Flow (SSF). Color scheme represents the basin locations assigned to each processor, ordered from p = 0 to 31. The number of processors can be
interpreted as the processor ID. Insets present the number of TIN nodes per processor (np) as a function of the number of processors (p from 0 to 31). (d) S[n,p] as a function of
the processor number for the sub-basin partitioning methods and the ideal case for tsim = 1-month.

E.R. Vivoni et al. / Journal of Hydrology 409 (2011) 483–496 493
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Fig. 10. Spatial maps of sub-basin partitioning methods applied to the Baron Fork (d = 0.98, nt = 878,211, nr = 5707) for p = 32 processors. (a) Default (Def). (b) Surface Flow
(SF). (c) Surface–Subsurface Flow (SSF). Color scheme represents the basin locations assigned to each processor, ordered from p = 0 to 31. The number of processors can be
interpreted as the processor ID. Insets present the number of TIN nodes per processor (np) as a function of the number of processors (p from 0 to 31). (d) S[n,p] as a function of
the processor number for the sub-basin partitioning methods and the ideal case for tsim = 1-month.

E.R. Vivoni et al. / Journal of Hydrology 409 (2011) 483–496 493

Surface-subsurface flow partitioning

Vivoni et al. (2011)

Identify the best domain 
partitioning to optimize 

allocation of computational 
resources.

Hydrologic Model
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★ Mediterranean areas are highly sensitive to climate variability and this 
vulnerability has significant impacts on water resources and hydrologic 
extremes.

★ Future climate projections depict a further decrease of water 
availability, with impact on agriculture.

MMD-A1B simulations. Annual mean. IPCC 2007 

Motivation of Climate Change Study



We quantify the impacts of climate change on water 
resources and hydrologic extremes of Mediterranean basins

Hydrologic Impacts of Climate Change



We quantify the impacts of climate change on water 
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GCM and RCM 
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Downscaling
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We quantify the impacts of climate change on water 
resources and hydrologic extremes of Mediterranean basins

Process-based 
Distributed 
Hydrological 

Modeling

(a) (b)

Change in 
evapotranspiration (mm)

Hydrologic Impacts of Climate Change

GCM and RCM 
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We quantify the impacts of climate change on water 
resources and hydrologic extremes of Mediterranean basins

Study Site 
Characterization 
and Monitoring

Process-based 
Distributed 
Hydrological 

Modeling

(a) (b)

Change in 
evapotranspiration (mm)
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We quantify the impacts of climate change on water 
resources and hydrologic extremes of Mediterranean basins

Vulnerability 
and Risk 

Assessment

Dissemination and 
Interaction with 

Stakeholders

Study Site 
Characterization 
and Monitoring

Process-based 
Distributed 
Hydrological 

Modeling

(a) (b)

Change in 
evapotranspiration (mm)
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Stream Network

Elev (m.a.s.l.)
963

66

Stream Network

Elev (m.a.s.l.)
963

66

Elev (m.a.s.l.)
1830

0

Azienda San Michele 
Experimental Farm

Our study site is the Rio Mannu basin (RMB), Sardinia, Italy

➡ Mediterranean climate:
★ Mean annual P = 680 mm 

(4% in summer).
★ Mean annual ET0 = 750 mm.

➡ Affected by prolonged drought 
period with water restrictions for 
agriculture.

Outlet
Reservoir

Area = 472 km2

Soil texture classes
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Deidda et al. (2013)

GCM Hadley Centre for Climate Prediction, Met Office, 
UK
HadCM3 Model (high sensitivity)

HCH

GCM Max Planck Institute for Meteorology, Germany
ECHAM5 / MPI OM

ECH

RCM Swedish Meteorological and Hydrological Institute 
(SMHI), SwedenRCA Model

RCA

RCM Max Planck Institute for Meteorology, Hamburg, 
Germany- REMO Model

REM

RCM Koninklijk Nederlands Meteorologisch Instituut 
(KNMI), Netherlands RACMO2 Model

RMO

Daily model 
outputs
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Scale gap between resolution of climate model 
outputs and resolution required by the hydrological 
model.

Problem: 

Precipitation
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Hydrologic Impacts of Climate Change



Solution: Use of two downscaling techniques for P and ET0.

Daily climate 
model outputs

Multifractal downscaling 
technique to disaggregate 

P in space and time
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Precipitation downscaling with a multifractal model

Precipitation Downscaling

RCM grid - Daily resolution
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Downscaled grid - Hourly resolution

Downscaling 
in 2-steps: 
(1) Time; 

(2) Space and Time.
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Precipitation downscaling with a multifractal model

Precipitation Downscaling

RCM grid - Daily resolution
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Downscaled grid - Hourly resolution
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in 2-steps: 
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(2) Space and Time.
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➡ Calibration in 1930 and validation in 1931-1932 (spin-up interval of 2 years).
➡ Model parameters, with focus on Ks and f, were manually tuned. Most values 

were derived from the literature.

★The tRIBS hydrologic model was calibrated with historical daily 
observations using two downscaling tools.
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➡ Calibration in 1930 and validation in 1931-1932 (spin-up interval of 2 years).
➡ Model parameters, with focus on Ks and f, were manually tuned. Most values 

were derived from the literature.

★The tRIBS hydrologic model was calibrated with historical daily 
observations using two downscaling tools.
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★The climate simulations were carried out in a reference (REF, 
1971-2000) and future (FUT, 2041-2070) period.
➡ A total of 256 years of simulations were conducted with the parallel code in 

Saguaro cluster at ASU.
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Change in ET0, ETR, and SWC

Change in potential (ET0) and real evapotranspiration (ETR), and 
soil water content (SWC) in the root zone:
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★ Increasing ET0 (annual mean of 
+3.7%), due to higher T. 

★Decreasing ETR (mean of -2.0%).

★Decreasing ETR due to diminishing 
SWC (-5.1%).

★Diminishing SWC due to decreasing P.

★ Results consistent with Senatore et al. 
2011 (JH).
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Quantifying ETR fluxes and SWC 
allows improving fully-coupled 

atmospheric-hydrologic schemes.



Key-Points of Climate Change Study

★Multiple climate scenario allowed characterizing uncertainty of 
future climate projections.



Key-Points of Climate Change Study

★Downscaling techniques allowed increasing the spatial and 
temporal resolution of climate model outputs.

★Multiple climate scenario allowed characterizing uncertainty of 
future climate projections.



Key-Points of Climate Change Study

★Downscaling techniques allowed increasing the spatial and 
temporal resolution of climate model outputs.

★Multiple climate scenario allowed characterizing uncertainty of 
future climate projections.

★The use of a process-based hydrologic model allowed 
simulating the complex rainfall-runoff process of a Mediterranean 
basin in distributed fashion.



Key-Points of Climate Change Study

★Downscaling techniques allowed increasing the spatial and 
temporal resolution of climate model outputs.

★Multiple climate scenario allowed characterizing uncertainty of 
future climate projections.

★The use of a process-based hydrologic model allowed 
simulating the complex rainfall-runoff process of a Mediterranean 
basin in distributed fashion.

★Expected impacts due to future climate on water resources 
and hydrology:
➡ Reduction of runoff volume.
➡ Intensification of extremes.
➡ Spatially-variable decreasing SWC and ETR.



Key-Points of Climate Change Study

★Downscaling techniques allowed increasing the spatial and 
temporal resolution of climate model outputs.

★Multiple climate scenario allowed characterizing uncertainty of 
future climate projections.

★The use of a process-based hydrologic model allowed 
simulating the complex rainfall-runoff process of a Mediterranean 
basin in distributed fashion.

★Expected impacts due to future climate on water resources 
and hydrology:
➡ Reduction of runoff volume.
➡ Intensification of extremes.
➡ Spatially-variable decreasing SWC and ETR.

★Utility for stakeholders: estimation of agricultural productivity, 
design of infrastructures, land use planning, and touristic sector, 
among others.



2. Study of climate change impacts in a 
Mediterranean basin

Outline

1. The tRIBS hydrologic model

3. Ecohydrological study of a regional basin in 
northwest Mexico
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Ecohydrological study

We used tRIBS to investigate the ecosystem control on hydrologic fluxes 
and states in the Rio San Miguel (RSM) basin, Mexico.

★ Semiarid climate.
★ Complex topography.
★Dramatic vegetation greening during the North American Monsoon (NAM).

Depth to bedrock according 
to Saulnier et al. (1997)

Area of 
3796 km2



Ecohydrological study

Dominant 
LC classes:

Dominant 
ST classes:

Subtropical 
Scrubland 49%

Sparse 
Woodland 37%

Grassland 6%

Evergreen 
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25%
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Model Calibration and Validation

★ Point calibration 
(summer 2004) of 
soil parameters 
against θ at the 9 
stations. 

★ TIN of 624,716 
nodes.
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★ Validation 
(summer 2007) at 
the stations with 
point and basin 
simulations.



Model Validation
★ Validation against 

2D-STAR θ and 
MODIS LST.

★ Wet day: Aug 8

★ Dry day: Aug 25

Soil Moisture

Land Surface Temperature

RMSE BIAS CC

(m3/m3) (° C) (-)

θ 0.10 0.08 0.02

LST 4.5 -1.7 0.52

Wet day 
Aug 8

Wet day 
Aug 8

Dry day 
Aug 25

Dry day 
Aug 25

RMSE BIAS CC

(m3/m3) (° C) (-)

θ 0.04 -0.006 0.08

LST 4.9 1.2 0.64
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Model outputs 
averaged on 
ecosystems: 
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Effect of elevation on θ and ET in the main ecosystems:
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Effect of elevation on θ and ET in the main ecosystems:
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★Clear differences between summer and winter.
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Effect of elevation on θ and ET in the main ecosystems:
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★Clear differences between summer and winter.

➡Lower θ at low elevation due to larger ET, in turn due to higher T.
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Effect of elevation on θ and ET in the main ecosystems:
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★Clear differences between summer and winter.

➡Lower θ at low elevation due to larger ET, in turn due to higher T.
➡Lower θ at high elevation, likely due to lateral water transfer.
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Effect of elevation on θ and ET in the main ecosystems:
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★Clear differences between summer and winter.

➡Lower θ at low elevation due to larger ET, in turn due to higher T.
➡Lower θ at high elevation, likely due to lateral water transfer.
➡Higher θ at mid-elevation, likely due to lower ET (lower T) and transfer from 

areas at higher elevation.
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Effect of elevation on θ and ET in the main ecosystems:
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★Clear differences between summer and winter.

➡θ has an opposite behavior due to larger presence of this class at higher elevation.

➡Lower θ at low elevation due to larger ET, in turn due to higher T.
➡Lower θ at high elevation, likely due to lateral water transfer.
➡Higher θ at mid-elevation, likely due to lower ET (lower T) and transfer from 

areas at higher elevation.
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Grassland, Sparse Woodland, Subtropical Scrubland:

Evergreen Woodland:
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Effect of elevation on θ and ET in the main ecosystems:
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★No differences in ET among ecosystems in winter. Limited control of elevation.

★Clear differences between summer and winter.

➡θ has an opposite behavior due to larger presence of this class at higher elevation.

➡Lower θ at low elevation due to larger ET, in turn due to higher T.
➡Lower θ at high elevation, likely due to lateral water transfer.
➡Higher θ at mid-elevation, likely due to lower ET (lower T) and transfer from 

areas at higher elevation.
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Evergreen Woodland:



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
mean and standard 
deviation of ET/P in 

dominant ecosystems:

0.4
0.6
0.8

1

J A S
0

0.2
0.4
0.6

 

 
G
SW
EW
SS

M
ea

n
 E

T/
P

S
t 

D
ev

 E
T/

P

Month



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
mean and standard 
deviation of ET/P in 

dominant ecosystems:

0.4
0.6
0.8

1

J A S
0

0.2
0.4
0.6

 

 
G
SW
EW
SS

M
ea

n
 E

T/
P

S
t 

D
ev

 E
T/

P

Month



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
mean and standard 
deviation of ET/P in 

dominant ecosystems:

0.4
0.6
0.8

1

J A S
0

0.2
0.4
0.6

 

 
G
SW
EW
SS

M
ea

n
 E

T/
P

S
t 

D
ev

 E
T/

P

Month



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
mean and standard 
deviation of ET/P in 

dominant ecosystems:

0.4
0.6
0.8

1

J A S
0

0.2
0.4
0.6

 

 
G
SW
EW
SS

M
ea

n
 E

T/
P

S
t 

D
ev

 E
T/

P

Month



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
mean and standard 
deviation of ET/P in 

dominant ecosystems:

0.4
0.6
0.8

1

J A S
0

0.2
0.4
0.6

 

 
G
SW
EW
SS

M
ea

n
 E

T/
P

S
t 

D
ev

 E
T/

P

Month



ET/P

Ecohydrological study

Investigation of rainfall recycling through the spatiotemporal 
evolution of ET/P in summer:

Evolution of spatial 
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Identifying preferential areas of 
moisture recycling is important to 

simulate feedbacks between 
atmosphere and land surface.
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