The POLIMI forecasting chain for flood and drought predictions

Politecnico di Milano

A. Ceppi¹, G. Ravazzani¹, C. Corbari¹, I. Bocus¹, G. Di Luccio¹, S. Meucci², A. Perotto³, R. Salerno³, M. Mancini¹

¹Department of Civil and Environmental Engineering (D.I.C.A.), Politecnico di Milano, Italy

²M.M.I. s.r.I., Milano, Italy

³Epson Meteo Centre, Cinisello Balsamo (Mi), Italy

Social and financial impact: extreme events and financial losses

The POLIMI forecasting chain for flood and drought predictions

POLITECNICO DI MILANO

Background & Aims of the study

Over the last twenty years severe river floods and droughts have occurred in Europe, causing thousands of deaths and billion Euros in insured economic losses. Experience suggests that appropriate warnings with sufficient lead time can mitigate the consequences of heavy precipitation events and long dry periods. Therefore, meteorological forecasts coupled to hydrological models can be used to decide on an early water-system control action to prevent or reduce problems with floods, droughts or water quality.

The two faces of the same coin Floods Droughts

Background: The complex flood protection system of Milan and surroundings developed in the last 60 years has not been able to protect its urban area, which frequently flooded in the last 25 years; hence the improvement of the Milan flood control system needs a synergism between structural and non-structural engineering approaches.

The POLIMI forecasting chain: WRF (deterministic, 1 km) + FEST-WB model (200 m)

Area of study: three catchments located northern than Milan area (the Olona, Seveso and Lambro River basins)

Target: how early warning systems are an effective complement to structural measures for flood control in Milan city?

Background: In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas traditionally rich of water such as the Po Valley in northern Italy.

The POLIMI forecasting chain: WRF (probabilistic with 20 ensemble members, 18 km) + FEST-EWB (200 m)

Area of study: Muzza Bassa Lodigiana Consortium in the Po Valley, northern Italy.

Target: development and implementation of the realtime drought forecasting system in the experimental test-site of a maize field in Livraga (Lodi): can we save irrigation water and use it in wiser way?

FEST-WB hydrological model

Area of study for flood forecasts

Change of	f natural	discharge
-----------	-----------	-----------

Basin	Gauging Section	Area [km ²]	Lag Time [h]
Olona	Castellanza (VA)	162.6	6.9
Seveso	Paderno Dugnano (MI)	175.36	7.5
Lambro	Milano, via Feltre	382.84	13.7

Lambro

TOTAL

Caslino

Lambrugo

Milano-

via Feltre

Peregallo

Hourly Hydrological Data

- Water level [cm]
- Rating curve

Basin	Gauging Station	Rating curve	State		
	Lozza	Yes	Active		
Olona Seveso Pa	Castiglione	No	-		
	Castellanza	Yes	Active		
Seveso	Cantù	Yes	Historical		
	Paderno Dugnano	No	-		
	Caslino d'Erba	Yes	Active		
Lombro	Lambrugo	Yes	Active		
Lampro	Peregallo	Yes	Active		
	Milano - via Feltre	Yes	Active		

Discharge [m³/s]

Calibration of the FEST-WB model (2003-2010 events)

	Coursing	err Q _n	_{nax} [%]
Basin	Station	Befor e	After
Olono	Lozza	-50.7	0.27
Olona	Castellanza	-51.8	0.12
Seveso	Cantù	-65.5	-10.9
	Caslino	78.4	0.57
Lambro	Peregallo	-72.1	1.5
	Milano	-74.8	-3.54

Validation of the FEST-WB model (2011-2012 events)

The WRF meteorological model for flood forecasts

The meteorological model used in this study is the WRF-ARW v.3.5 developed by the National Center for Atmospheric Research (NCAR)

- Spatial resolution: 3 nested domains 12 km -> 4 km ->
- 1 km
- Temporal output: 1 hour
- Vertical level: 37 (non-hydrostiatic)
- Forecast horizon: 36 hours
- Starting run @ 12:00 UTC
- IC and BC provided by the GFS model (@12 km)
- Cloud microphysics scheme: Eta
- Longwave radiation scheme: RRTM (Rapid Radiative Transfer Model)
- Shortwave radiation scheme: Dudhia
- Land surface model: Noah with 4 soil layers and 24 types of soil
- PBL scheme: Bougeault-Lacarrère
- Owner: MOPI Epson Meteo Centre

OUTPUT:

Deterministic forecasts of hourly temperature at 2m above ground and precipitation provided by MOPI – Epson Meteo Centre

The WRF model domain

Re-analysis of flood events

The cascade forecasting system applied in this study is currently based on hydrological model initialization from meteorological model output

The re-analysis is based on the exceeding of the alert threshold (code 1):

• event: the observed discharge exceeds the warning threshold

 no-event: the observed discharge did not exceed the warning threshold

Hydrological simulation

Basin	Gauging Station	Level [m]	Discharge [m³/s]
Olono	Lozza	-	36*
Olona	Castellanza	1.80	43
Seveso	Cantù	1.20	13
	Paderno Dugnano	2.30	75**
	Caslino d'Erba	-	6*
Lambr	Peregallo	1.00	30
U	Milano, via Feltre	2.10	83

* $Q2 = Q1\frac{A2}{A1}$ ** Q = Qmax @ Ornati section + Qmax of the CSNO

Courtesy of Civil Protection of the Lombardy Region

Re-analysis of flood events

A total of 15 events (45 analyzed days considering the peak, the rising and recession limb) between 2008 and 2010 were selected to value the hydro-meteorological chain performance, coupling the WRF meteorological model with the FEST-WB hydrological model.

Case Study	Day	Type of Event
1	17,18 May 2008	Convective
2	12,13,14 July 2008	Convective
3	12,13,14 September 2008	Convective
4	4,5,6 November 2008	Stratiform
5	30 November, 1, 2 December 2008	Stratiform
6	6,7,8 February 2009	Stratiform
7	27,28,29 April 2009	Stratiform
8	7 July 2009	Convective
9	17,18 July 2009	Convective
10	23,24,25,26 December 2009	Stratiform
11	2,3,4,5,6,7 May 2010	Stratiform
12	11,12,13 August 2010	Convective
13	18,19 September 2010	Convective
14	31 October, 1,2,3, November 2010	Stratiform
15	15,16,17 November 2010	Stratiform

Olona basin: July 2009 convective event

Seveso basin: September 2010 convective event

Lambro basin: August 2010 convective event

----- OBSERVED ---- FEST-WB with WRF ----- FEST-WB with OBSERVED RAIN

		OBSERVED EVENT							
		YES	NO						
ASTED NT	YES	HIT (a)	FALSE ALARM (b)						
FOREC/ EVE	NO	MISS (c)	CORRECT REJECTION (d)						

The contingency table gives an overview of the predictive capabilities of the hydro-meteorological chain

Index	Equation	Perfect Score
POD (Probability Of Detection)	$\frac{a}{a+c}$	1
F (False alarm rate)	$\frac{b}{b+d}$	0
CSI (Critical Success Index)	$\frac{a}{a+b+c}$	1
CPI (Correct Performance Index)	$\frac{a+d}{n}$	1

Wilks, 2006

Performance for each basin

Index	Olona	Seveso	Lambro		
POD	0.57	0.37	0.43		
F	0.03	0.03	0.10		
CSI	0.52	0.33	0.41		
CPI	0.88	0.84	0.57		

Global performance

The performance of the hydro-meteorological chain is not so high, but it is encouraging with a POD equal to 45%.

The presence of false and missed alarms is due to:

- low performance of the WRF model during convective events
- uncertainty in the estimated threshold @ Paderno Dugnano gauging station
- not accurate calibration of the hydrological model @ Milano gauging station in the Lambro River basin

		OBSERVED EVENT			Index	Value		
		YES	ΝΟ		POD	0.45		
STED	YES	61	8		F	0.04		
ECA:					CSI	0.42		
FOR	NO 76	180		CPI	0.74			

Critical problems in the Lambro River basin (1)

 The sewerage system in the province of Monza does not let to quantify how much water flows into the Lambro River during flood events

Urbanized territories, which are not included in natural basin of the Lambro River, contribute to increase the runoff at the gauging section.

Critical problems in the Lambro River basin (2)

Problems for reproducing the peak flood and runoff due to lake regulations

2. Diotti sluice: impossible to quantify how much water is released into the Lambro River due to regulations of the water level of the Pusiano Lake water level.

Diotti sluice

As non-structural method, the POLIMI hydro-meteorological chain can be used to predict floods in Milan urban area in advance, however some suggestions are strictly required to improve the hydro-meteorological chain:

- 1) Meteorological data (above all precipitation) are not sufficient to cover the entire basin area, and even hydrological information needs to be incresead.
- 2) The spatial resolution (1 km) of the WRF model is not approriate, in particular for forecasting convective events. A multi-model approcah, coupling high resolution deterministic models with coarser, but probabilistic models, is suggested.
- 3) A higher forecast horizon (48-72 hours) is necessary for civil protection actions in such hydrological cathcments.

FEST-EWB hydrological model

Eddy.covariance station and TDR probes

DEM Lombardy Region

The territory of the MBL consortium covers an area of 740 km² in which there are more than 150 time at the second of the second of the second secon

Calibration of the FEST-EWB model (2010-2011)

Evapotranspiration

Soil moisture

The POLIMI forecasting chain for flood and drought predictions

25

Validation of the FEST-EWB model (2012)

Soil moisture

ROGGIA PORRA NUO	VA -	L'orario	ha inizio	il 3 di ap	orile alle d	ore 64,00		Ruota d	giorni 14	per un t	otale di or	e 365		ANNO 200	
PROPRIETA'	PODERE	DURATA	PIO INIZIO		2000		MESE	E GIORN	IN CUI	OMPETI	LIRRIG	ZIONE		This states and	
FERRARI PIETRO E TERESA		62.30	4.00	3-apr	18-apr	3-meg	18-meg	2.04	17-04	2410	17-lug	1-800	10-000	31-400	15-set
BOSONE PIERO EREDI	RAMPINA	15.00	4.30	3-apr	13-apr	3-mag	18-mag	2-0N	17-010	24/2	17-142	1-400	15-ago	31-000	15-set
SCOTTI UMBERTO	ROSA DEL PROPRIO	06.00	21,30	3-407	10-601	3-mag	18-mag	2-95	17-giu	2402	17-149	1-800	18-ago	31-900	15-000
SCOTTI BRUNO	ROSA DEL PROPRIO	\$2.00	3.30	4-801	19-apr	4-mag	19-mag	3-plu	18-plu	3-1/2	18-140	2.000	17-800	1.60	16-set
FASOLI GIACOMO	CAMPO LOCATO	00.30	5.30	4-apr	10-apr	4-mag	19-mag	3-glu	18-pk	3-109	18-102	2.000	17-000	1-945	16-set
VIRTUANE LUNCEE ANSELO		01.05	6.00	4-00F	19-307	4-mag	15-mag	3-gk	18-ok	3400	18-102	2-800	17-#00	1-141	16-set
GAVERI MARIO		00.24	7.06	4-007	10-apr	4-mag	15-mag	3-giu	18-ciu	3-102	18-102	2-800	17-800	1-545	16-set
GLAVERI PIETRO	CAMPO PERSIA #	00.45	7.30	4-007	10-apr	4-mag	19-mag	3-ghi	18-04	3-810	18-102	2-800	17-000	1-440	16-set
CATTMELU C	CAMPAZZO	00.45	8.15	4-00r	10-apr	4-mag	th-map	3-ghi	18-ck/	3-8-0	10-lug	2-000	17-000	1-set	16-set.
BOSONE PIERO EREDE	RAMPINA	63,30	9.00	4-apr	10-apr	4-mag	15-mag	3-giu	18-ciu	340	18-100	2-000	17-ago	1-aat	16-set
GIAVERI MARIO	CAMPI PERSIAA OCATO	01.00	12.30	4-apr	10-apr	4-mag	11-mag	3-g/u	18-olu	340	18-149	2-000	17-000	1-64L	18-set
FASOLI GIACOMO	CAMPO LOCATO	00,30	13.30	4-apr	19-apr	4-mag	19-mag	3-g/u	18-QU	3-8-0	18-100	2-000	17-000	1-047	16-set
CHIODA EREDI	CASCINA VECCHIA	20.00	14.00	4-acr	19-acr	4-mag	15-mag	3-oiu	18-04	3.40	16-100	2.400	17.000	1.441	16.441
DEDE' ALBERTO E CARLA	ROSA DEL PROPRIO	22.00	10.00	5-acr	20-acr	5-1102	25-map	4-04	10.01	430	19.4.0	3.400	18.000	2.44	17.441
CATTIVELLI C.	CAMPAZZO / PERSIA	67.00	8.00	6-acr	21-804	6-mag	21-mac	5-04	23-04	530	20.44	6.000	10.000	3.00	18.041
VALENTI G. CESARE	CAMPAZZO	04.00	15.00	6-scr	21-007	6-7180	25-mag	Solu	25-64	55.0	20.40	4.000	10.000	3.44	18.041
IST, MILAN, MARTINET E STEL	CAMPAZZO	16.00	19.00	6-acr	21-007	6-man	21.mat	5.00	23,091	She.	20.40	6.000	10.000	3.000	18.441
ST. MILAN, MARTINIT E STEL	RAMPINA	07.00	11.00	7-80r	22-ecr	7-man	22-man	Grin	25-04	640	25.40	6.000	20.000	6.447	10.441
ST. MILAN, MARTINIT E STEL	SAN GIOVANNI	05.00	18.00	7-807	22-804	7-1140	22-mail	Gene	25.04	640	25 hur	6.000	20,000	4.44	10-201
VALENTI G. CESARE	CAMPAZ20	03.00	3.00	6-acr	23-acv	5.000	23.mat	7.004	22.04	7.40	22.4.0	6.000	21.000	6.000	20.441
IST. MILAN, MARTINIT E STEL	SAN GIOVANNI	03.00	6.00	S-atr	23-407	6-040	25-040	7.00	22.00	7.80	23.4.0	6.433	57.000	1-941	20-941
SCANDELLI FRATELLI	LINRAGA	05.00	9.00	B-atr	23-404	B-mag	23-040	7.00	22.00	7.60	22.4.0	6-800	21-0020	2-945	100.001
FONDAZIONE VITTADINI	LINRAGA	06.00	14.00	S-atr	23.87	B.mag	23,000	7.00	22,000	7.64	72.4.0	6.433	21-020	298	10.04
FONDAZIONE VITTADINI	CANTONE	05.00	20.00	Barr	2harr	Scenary.	21,000	2.04	22,064	7.64	73.040	5-920	21-000	- 10-041	20.041
FONDAZIONE VITTADINI	DOSSNO	08.00	2.00	Gate	24.80	0 man	24.000	E-nix	23-044	2.4.0	22.54	2.000	41-900	12101	20.000
ST. MRAN, MARTINIT & STEL	LUCGO NUOVO	09.00	10.00	6.ev	24.00	B.mag	24.mag	B-Dir	23.40	0.400	23.0.0	7.490	22.490	0.00	21-001
PASSARINI GRUIO	CAMPO DI CASA	01.00	19.00	Garr	24.00	0.mag	24.000	R-nix	12.00	6.4.00	22.00	7.000	22,000	0.00	21-941
CHICOA EREDI	CASCINA VECCHIA	52.00	20.00	Gan	24.00	9,040	24.000	5.00	21.00	8.4.00	71.0.0	7.000	22-920	0.96	41.993
DEDE' ALBERTO E CARLA	ROSA DEL PROPRIO	20.00	0.00	12.000	27.414	12,045	27.000	11.00	36.00	41.6.0	26.60	10.000	26-990	0-901	21-865
CHICOA EREDI(SCOTTI)		02.30	20.00	12.44	27.44	12.004	27.000	15.00	20.00	41.6.0	20-000	10-800	20-020	9-901	29-945
CHICOA EREDI (FERRARI)		00.30	22.30	12.40	27.44	12,0042	27.0040	11.00	20.00	11.0.0	10.64	10-832	23-823	9-941	26-96
CHICOA EREDH (SPAGLARDI)		07.00	23.00	12.007	27.an	12,000	27,000	15,000	36.04	114.0	20-00	10-832	23-823	2.98	20-945
CHICOA EREDIT ROSSIT		05.00	6.00	13.407	28.44	13,000	26-man	12-00	27.04	12.00	17.4.4	11.000	27.0022	2.96	20-541
CHIODA EREDI	CASCINA VECCHIA	32.00	11.00	13-arr	28.411	13,0941	28-man	12.00	27.04	47.510	27.14	11.000	20.000	12.001	10.000
ROSSI FRATELLI		08.00	12.00	14-807	29.an/	16.0040	29,000	12.00	28.04	13.142	26.142	12.000	2070022	11.00	10.001
UTENZA ROG. PORRA MUOVA		02.00	3.00	15.an	30.44	15-mag	33.040	Maria	25.04	14.1-0	20.00	13,000	20.000	11:00	12-141
GRECCHI ETTORE	CASCINA NUOVA	30.00	5.00	15-acr	30-407	15-mag	35-man	(SARW)	20.00	14.5-0	26.10	12,000	10.000	12-54	27-08
A AG. PACCHIARINI DANIELA	RONCH	64.00	\$1.00	til and	1.0000	16.000	21.000	18.000	33.00	15.50	- anno	11-920	42-900	14-544	27-588
SPAGLIARDE GIANBATTISTA		09.00	95.00	Many.	1.000	16 mag	31.004	15 44	20.00	10000		14.000	78.000	11 and	70.000
AZ AQ SARCHIO S.S.	CALOFL PARTO	08.00	0.00	17-001	2,000	17.000	1.44	10-00		10-5/0	20-12	14-000	22-800	13-64	20-9et
DEDE ALBERTO E CARLA	ROSA DEL PROPRIO	20.00	8.00	17.001	2,000	17.0000	1-50	10.00	1-840	10-52	31-100	15-000	30-800	14-14	29-set
	Trocket and Children and	#10.00	0.00	11.987		11-mag	159	79-9V	1.1490	10-102	31-10	15-600	30-400	14-581	2

Evapotranspiration

Time table for irrigation water allotments

The PRE.G.I. system: Hydro-meteorological forecast for irrigation management

Our idea was to create a web application where farmers are able to monitor real-time soil moisture conditions and forecasts. The knowledge of Quantitative Precipitation Forecasts (QPFs) for the following weeks combined with the updating of hydrological conditions makes it possible to obtain a tool for water distribution management in cultivated areas in order to improve irrigation scheduling, minimize irrigation costs and save water

Soil moisture forecasts

Probability to exceed the water surplus and stress threshold

The probabilistic forecast was provided by the REPS (Regional Ensemble Prediction System), based on the WRF-ARW model, implemented and developed by the Epson Meteo Centre.

- Spatial Resolution: 18 km
- Temporal output: 12 h
- Vertical levels: 36 (non-hydrostatic)
- Ensemble members: 20, each perturbation of the ensemble is produced by an algorithm developed by the EMC based on a special application of Ensemble Transform Kalman Filter (EnTKF)
- Forecast horizon: + 30 days
- Run starting at: 00:00 UTC
- IC and BC are provided by a Global Ensemble Prediction System (GEPS) based on a modified version of the WRF-ARW applied at the global scale, which has a grid mesh size of 200 km
- Owner: MOPI Epson Meteo Centre

The WRF model domain

WRF model: performance reanalysis

67 dry events where selected during 2003 and 2008

Initialization: 26 May 2006

Cumulated precipitation:

Comparison between WRF vs TRMM

Initialization: 5 July 2006

Skill scores of performance for the 2012 growing season

 O_i = observed values

 F_i = median of forecasted values

 $\overline{O_i}$ = the average of observed values

n = numbers of analyzed events

The results show how it was possible by combing meteorological and hydrological models to have reliable soil moisture forecasts for up to 7 and 10 days respectively, with a mean relative error of less than 10%, and cumulated precipitation forecasts with a NS index above 0.80 and a BS score lower than 0.15.

N = number of forecasting instances

 F_k = the probability that an event was forecasted

 O_k = the actual outcome of the event at instance k (0 if it doesn't happen and 1 if it happens)

30

To follow or not to follow the PREGI system

R

R

G

Ν

Summary: can we save irrigation water?

Conclusions for drought predictions

- This developed tool for irrigation management has a higher reliability in comparison with flood forecasting systems, because it is characterized by slower and persistent weather dynamics over larger areas. One can consider, for instance, the large difference in hydrological processes between rainfall events with intensities which can reach up to 100 mm h⁻¹ over areas of a few tens of km² (flood events) and events with evapotranspiration rates of about 7-8 mm per day over areas of a few thousand of km² (drought events).
- 2. The benefits of this project are both direct and indirect: the direct benefits regard the monitoring and forecasting of soil water content according to the current state of soil moisture values and water crop requirements, while the indirect benefits regard the optimization of water irrigations pursuing the best quantitative distribution, in particular periods of water scarcity, in order to minimize production losses caused by water stress due insufficient watering
- 3. One of the future developments is to extend these analyses over different sites with other case studies during future growing seasons. However, a limit for replicating this system in other areas will be that of obtaining real-time data (weather and soil moisture information), amounts and scheduled irrigation dates, which are usually not easy to acquire in real time.

The POLIMI forecasting chain for flood and drought predictions

POLITECNICO DI MILANO

